NPS ARCHIVE
1969.06

DAVIS, \mathbf{J}.

FREQUENCY RESPONSE ANALYSIS AND DESIGN
OF
SINGLE-VALUED NONLINEAR SYSTEMS USING THE PARAMETER PLANE
by

John Philip Davis

United States Naval Postgraduate School

THESIS

FREQUENCY RESPONSE ANALYSIS AND DESIGN OF
SINGLE-VALUED NONLINEAR SYSTEMS USING THE PARAMETER PLANE

by
John Philip Davis

June 1969

This document has been approved for public release and sale; its distribution is unlimited.

Frequency Response Analysis and Design of
 Single-Valued Nonlinear Systems Using the Parameter Plane

by

John Philip Davis
Lieutenant(junior grade)" United States Navy B.S., United States Naval Academy, 1968

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the
NAVAL POSTGRADUATE SCHOOL June, 1969

ABSTRACT

Frequency response techniques are a valuable tool in the analysis and synthesis of linear systems. Extension of these techniques is made to analyze and design systems with a single-valued nonlinear element. The relationship between the characteristics of a nonlinear element and the frequency of the system is developed by simple calculations and a digital computer program.

TABLE OF CONTENTS

I. INTRODUCTION 13
II. INTRODUCTION TO NONLINEAR FREQUENCY RESPONSE 17
ANALYSIS USING THE PARAMETER PLANE
A. PREFACE 17
B. ANALYSIS OF FIRST EXAMPLE 17
C. STEPS IN THE ANALYSIS 39
D. FURTHER INVESTIGATION OF THE JUMP 41RESONANCE EFFECT
III. FURTHER EXAMPLES OF NONLINEAR FREQUENCY 50 RESPONSE ANALYSIS
A. INTRODUCTION 50
B. FIRST EXAMPLE 50
C. SECOND EXAMPLE 58
D. THIRD EXAMPLE 63
E. FOURTH EXAMPLE 74
F. FIFTH EXAMPLE 82
G. SIXTH EXAMPLE 90
IV. THE EFFECT OF CHANGING THE INPUT TO THE 101SYSTEM
A. INTRODUCTION 101
B. THE EFFECT OF CHANGING THE INPUT WITH 101A SATURATION ELEMENT IN THE SYSTEM
C. THE EFFECT OF CHANGING THE INPUT WITH lll
A DEAD ZONE ELEMENT IN THE SYSTEM
V. DESIGN TECHNIQUES 120
A. FIRST DESIGN PROBLEM 120
B. SECOND DESIGN PROBLEM 140
VI. DISCUSSION, CONCLUSIONS, AND AREAS OF 147
FUTURE STUDY
A. DISCUSSION 147
B. CONCLUSIONS 147
C. FUTURE AREAS OF STUDY 149
APPENDIX A. ANALOG SIMULATION 151
COMPUTER PROGRAM-PARAMS 155
LIST OF REFERENCES 175
INITIAL DISTRIBUTION LIST 176
FORM DD 1473 179

LIST OF TABLES

Table
Page
II.la α and β as Functions of $\frac{\Theta_{e}}{\Theta_{\text {in }}}$ for the 27 Saturation Element
II. lb α and β as Functions of $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ for the $\quad 27$ Dead Zone Element
II. 2α as a Function of $\frac{\Theta_{e}}{\Theta_{i n}}$ for the $\quad 46$ Saturation Element
III.1 α as a Function of $\frac{\theta_{\mathrm{e}}}{\theta_{i n}}$ for the

Saturation Element in Example \#l
III. 2β as a Function of $\frac{a}{\Theta_{i n}}$ for the Dead 62 Zone Element in Example \#2
III.3 α as a Function of $\frac{e}{\Theta_{\text {in }}}$ for the Dead 70 Zone Element in Example \#3
III.4 β as a Function of $\frac{\Theta_{a}}{\Theta_{i n}}$ for the 78 Saturation Element in Example \#4 α as a Function of $\frac{\Theta^{e}}{\Theta_{i n}}$ for the Relay86

Element in Example \#5
III. 6α as a Function of $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ for the Coulomb 94 Friction Plus Stiction in Example \#6
IV.1 α as a Function of $\frac{\Theta_{i n}}{\Theta_{i n}}$ and $\Theta_{i n}$ for the 108 Saturation Element
IV. 2β as a Function of $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ and $\Theta_{\text {in }}$ for the 116

Dead Zone Element
V. $1 \quad \beta$ as a Function of $\frac{\Theta^{e}}{\Theta_{i n}}$ for the Relay 135 with Dead Zone

LIST OF ILLUSTRATIONS

Figure Page
2.1 Position Servomechanism of Chapter 2 18
2.2 Block Diagram of the Servomechanism of 20
Chapter 2
2.3a Saturation Element of Example in Chapter 2 22
2.3b Dead Zone Element in Chapter 2 23
2.4 α versus $\frac{e}{\Theta_{i n}}$ Magnitude for a Nonlinearity 30 in the Forward Path2.5 Closed Loop Frequency Response of the32Servomechanism with a Nonlinearity in theForward Path
2.6 Open Loop Frequency Response for 35
Saturation and Dead Zone Elements in theForward Path
2.7 $\quad \beta$ versus $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ Magnitude for a Nonlinearity 36 in the Feedback Path
2.8 Closed Loop Frequency Response of the 38
Servomechanism with a Nonlinearity in theFeedback Path
2.9 Block Diagram of a Servo with Saturation 42
2.10α versus $\frac{e}{\Theta_{i n}}$ Magnitude for a Servo with
Saturation
2.11 Closed Loop Magnitude Frequency Response 47 for a Servo with Saturation
FigurePage
2.12 Closed Loop Phase Frequency Response 49 for a Servo with Saturation
3.1 Block Diagram of Example \#l where α 51Represents the Variable Gain of theSaturation Element
3.2 Saturation Element of Example \#l 53
3.3 α versus $\frac{e}{\Theta_{i n}}$ Magnitude for Example \#l 56
3.4 Closed Loop Frequency Response of 57Example \#l
3.5 Block Diagram of Example \#2 where β 59
Represents the Variable Gain of the Dead Zone Element
3.6 Dead Zone Element of Example \#2 60
3.7 β versus $\frac{\Theta_{i n}}{\Theta_{i n}}$ Magnitude for Example \#2 643.8 Closed Loop Frequency Response of65Example \#2
3.9 Block Diagram of Example \#3 where α 66
Represents the Variable Gain of the Dead Zone Element
3.10 Dead Zone Element of Example \#3 68
3.11α versus $\frac{e}{\Theta_{i n}}$ Magnitude for Example \#3 71
3.12 Closed Loop Frequency Response of 73Example \#3
3.13 Block Diagram of Example \#4 where β 75Represents the Variable Gain of theSaturation Element
3.14 Saturation Element of Example \#4 76
3.15β versus $\frac{a}{\Theta_{i n}}$ Magnitude for Example \#4 80
3.16 Closed Loop Frequency Response of 81
Example \#4
3.17 Block Diagram of Example \#5 where α 83Represents the Variable Gain of the Relay
3.18 Ideal Relay of Example \#5 84
3.19α versus $\frac{\mathrm{e}}{\boldsymbol{\theta}_{\text {in }}}$ for Example \#5 88
3.20 Open Loop Frequency Response of Example \#5 89
3.21 Block Diagram of Example \#6 where α 91
Represents the Variable Gain of Coulomb
Friction Plus Stiction Element
3.22 Coulomb Friction Plus Stiction Element of 92
Example \#6
3.23α versus $\frac{\text { out }}{\Theta_{\text {in }}}$ Magnitude for Example \#6 95
3.24 Open Loop Magnitude Frequency Response 97of Example \#6
3.25 Open Loop Phase Frequency Response of 98 Example \#6
3.26 Closed Loop Magnitude Frequency Response 99
of Example \#6
3.27 Closed Loop Phase Frequency Response of 100 Example \#6
4.1 Block Diagram of Servomechanism in 102 Chapter 2

Figure Page
5.9 Closed Loop Frequency Response of Problem 137
with Proposed Design Solutions
5.10 Block Diagram of Second Design Problem 142
5.ll Desired Closed Loop Frequency Response 143
of Second Design Problem
5.12α versus $\frac{e}{\Theta_{i n}}$ for Second Design Problem 144
5.13 Characteristics of the Nonlinear Element 146 of Second Design Problem
A.l EAI TR-20 Electronic Comparator 153

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation and indebtedness to Doctor George J. Thaler for the topic, guidance and assistance which he provided during the pursuit of this study and the preparation of this thesis. The author would also like to express his extreme indebtedness to his wife, Nancy Anne, for her invaluable help in finishing this thesis.

I. INTRODUCTION

Frequency response techniques are a valuable tool in the analysis and synthesis of linear systems. Reasons for this are, in part, the ease of presentation and manipulation of block diagrams and transfer functions, and in part, the ease of computation and interpretation of Bode diagrams and Nichol charts. It is therefore desirable to extend these techniques to include nonlinear systems. Block diagrams with nonlinear elements can be handled with the addition of some new rules. Handling transfer functions that include nonlinearities presents more of a problem. The nonlinear element's characteristics must be described in terms of frequency so that they can be treated mathematically with the linear part of the system. This thesis develops a technique which shows the relationship between the nonlinearity and the frequency response of the system. It then uses this relationship to perform analysis and synthesis of systems that contain nonlinearities.

Several assumptions are made and some conditions must be satisfied. The most important condition is that the nonlinearity be a single-valued nonlinearity. A singlevalued nonlinearity is one that for any given input has only one output. This condition eliminates elements such as backlash, negative deficiency, two-position relay, relay with hysteresis, etc. By making this condition, a
single-valued nonlinearity can be expressed as a variable gain device, with the gain a function of the signal into the device.

Two other main conditions are required. The first is the condition that the input to the system be a pure sine wave of constant amplitude. The second condition is that the input signal to the nonlinear component is a pure sine wave.

In order to describe the nonlinearity as a function of frequency, it must first be described as a variable gain device. This gain is a function of the signal amplitude into the element. Using the PARAMS program, a plot of the gain versus the signal amplitude can be made. Each curve in the resulting family is for a fixed frequency. With this plot the gain can be described as a function of frequency. Using this relationship between gain and frequency, the analysis can be completed on a frequency response plot with constant gain curves.

The analysis and synthesis techniques use the PARAMS program (reproduced in the computer print-out section) to make two types of plots. The first type of plot is a plot of nonlinear gain versus the signal amplitude into the nonlinear element with constant frequency. The second type of plot is a plot of the magnitude (or phase) of the open or closed loop function versus frequency. Each curve in the family is for a fixed value of gain for the nonlinear element.

A brief description of the operation of the PARAMS program is presented below. Let a transfer function be represented by.

$$
\begin{equation*}
T(s)=\frac{N(s)}{D(s)} \tag{1.1}
\end{equation*}
$$

Where $N(s)$ is of the form $A_{0}+A_{1} s+A_{2} s^{2}+\cdots A_{n-1} s^{n-1}+A_{n} s^{n}$ and $D(s)$ is of the form $B_{0}+B_{1} s+B_{2} s^{2}+\cdots B_{m-1} s^{m-1}+B_{m} s^{m}$.

Each A_{k} and B_{k} can be represented by,

$$
\begin{align*}
& A_{k}=C_{k}+D_{k} \alpha+E_{k} \beta+F_{k} \alpha \beta \tag{1.2a}\\
& B_{k}=G_{k}+H_{k} \alpha+I_{k} \beta+J_{k} \alpha \beta \tag{1.2b}
\end{align*}
$$

Where α and β are two variable parameters of the system. $T(s)$ can be represented by,

$$
\begin{equation*}
T(s)=\frac{N_{e}(s)+N_{o}(s)}{D_{e}(s)+D_{o}(s)} \tag{1.3a}
\end{equation*}
$$

and $T(-s)$ by,

$$
\begin{equation*}
T(-s)=\frac{N_{e}(s)-N_{o}(s)}{D_{e}(s)-D_{o}(s)} \tag{1.3b}
\end{equation*}
$$

Where $N_{e}(s)$ is the even order terms of the numerator of $T(s)$. $N_{O}(s)$ is the odd order terms of the numerator of $T(s), D_{e}(s)$ is the even order terms of the denominator of $T(s)$, and $D_{O}(s)$ is the odd order terms of the denominator of $T(s)$ 。

The mangitude squared function is,
$M^{2}=[T(s)][T(-s)]=\frac{\left[N_{e}(s)\right]^{2}-\left[N_{0}(s)\right]^{2}}{\left[D_{e}(s)\right]^{2}-\left[D_{0}(s)\right]^{2}}$

Each term of equation (1.4) is a even polynomial in s. Letting $s=j w$, equation (1.4) can be reduced to, ${ }^{1}$

$$
M^{2}=\frac{\sum_{k=0}^{N} A_{k} \omega^{2 k}}{\sum_{k=0}^{m} B_{k} \omega^{2 k}}
$$

Where A_{k} and B_{k} are given by equations (1.2a) and (1.2b).

By letting α or β be a constant, plots of the remaining variable parameter (β or α) versus magnitude can be made with frequency constant. In like manner, plots of magnitude versus frequency can be made with a constant parameter value.

Phase calculations can be made by utilizing the formula,
$\Theta=\tan ^{-1}\left[\frac{N_{0}(s) D_{e}(s)-N_{e}(s) D_{0}(s)}{N_{e}(s) D_{e}(s)-N_{0}(s) D_{0}(s)}\right]$
In this thesis α or β represents the variable nonlinear gain.

1
Glavis, G.O., Frequency Response in the Parameter Plane, Master's Thesis, Naval Postgraduate School, 1967.

A. PREFACE

As an introduction to the technique of nonlinear frequency response analysis, a fourth order system will be considered. The analysis is divided into two parts. One part is the analysis of the system with a nonlinear element in the forward path. The second part is the analysis of the system with a nonlinear element in the major feedback path. Each part will be analyzed for a saturation element and then analyzed for a dead zone element. All the assumptions made in the first chapter are valid for this example and all other examples used.

The second section of this chapter looks closer at the jump resonance effect that a nonlinear element can cause. The example taken is a simple second order servo with a saturation element in the forward path. The analysis techniques are the same in this example as were those in the first example of this chapter.
B. ANALYSIS OF THE FIRST EXAMPLE

The first example of this analysis is a fourth order system with a nonlinear element in either the forward path or the main feedback path. The fourth order system chosen for this example is a simple position servomechanism which is shown in Figure (2.1)。

Figure 2.1 POSITION SERVOMBCHANISM ESAMPLE OF CHAPTER 2

The transfer function of the amplidyne is,
$G_{a}(s)=\frac{k_{q}}{\left(s+\frac{l^{\tau_{f}}}{}\right)\left(s+\frac{1}{\tau_{q}}\right)}$
where $\tau_{f}=\frac{l_{f}}{R_{f}}$ and $\tau_{q}=\frac{l_{q}}{R_{q}}$
The motor-load combination transfer function is,
$G_{m}(s)=\frac{k_{m}}{s\left(s+\frac{1}{\tau_{1}}\right)}$

Where τ_{1} is the motor-load time constant and is predetermined.

The error detector has a gain of k_{e}.
Putting the position servomechanism into block diagram form is done and is shown in Figure (2.2). The nonlinear element in the forward path is fed by the error signal Θ_{e}. The output signal, Θ_{a} feeds the nonlinear element in the main feedback path. These nonlinear elements are represented by blocks with their associated variable gain. α is the variable gain for the nonlinear element in the forward path and β is the variable gain for the nonlinear element in the main feedback path. The two nonlinear elements are not in the system at the same time. Analysis will be done for the nonlinearity in the forward path and then for the nonlinearity in the main feedback path.

Figure 2.2 BLOCK DIAGRAM OF THE POSITION SERVOMECHANISM OF CHAPTER 2

Assume that $\frac{1}{\tau_{f}}=10.0, \frac{1}{\tau_{q}}=5, \frac{1}{\tau_{1}}=3$, and $k_{q} k_{m}{ }^{k} e_{e}=600$. The characteristic equation now becomes,

$$
\begin{equation*}
s^{4}+18 s^{3}+95 s^{2}+150 s+600 \alpha \beta=0.0 \tag{2.3}
\end{equation*}
$$

And the closed loop transfer function is,

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}=\frac{600 \alpha}{s^{4}+18 s^{3}+95 s^{2}+150 s+600 \alpha \beta} \tag{2.4}
\end{equation*}
$$

When analyzing the system with a nonlinearity in the forward path, β will be equal to unity. The converse is true when analyzing with the nonlinearity in the feedback path. α will then be equal to unity.

Many types of single-valued nonlinearities could be considered here. Two types are used in this example and in examples that will follow mainly for simplicity sake. These two types are saturation and dead zone. For this example the saturation element limits at 10.0. as shown in Figure (2.3a). Figure (2.3b) shows the dead zone element where the dead zone ends at 10.0 . The assumed magnitude of $\Theta_{i n}$ is 20.0. It could be any magnitude; however it must be specified for the analysis because the frequency response is a function of the magnitude of $\Theta_{i n}$. Because the gain of the nonlinear element is a function of the signal going into it, what is desired is a relationship between the gain of the nonlinear element and the input signal. However, it is hard to describe the signal going into the nonlinear element as a function of the nonlinear gain. It is easier to

Figure 2.3a Saturation element of example in chapter 2

Figure 2.3b Dead zone element in chapter 2
develop a relationship between the gain of the nonlinear element and $\frac{\Theta_{n l}}{\Theta_{i n}}$, where $\Theta_{n l}$ is the signal going into the nonlinear element and $\Theta_{i n}$ is the input into the system. For this example, $\Theta_{n l}=\Theta_{e}$ for the case of the nonlinearity in the forward path, and $\Theta_{n l}=\Theta_{\text {out }}$ for the nonlinearity in the main feedback path. This may be seen in figure (2.2).

For the case of the forward path nonlinearity, the gain, α, may be described as,

$$
\begin{equation*}
\alpha=\frac{\Theta_{b}}{\Theta_{e}} \tag{2.5}
\end{equation*}
$$

Where Θ_{b} is the signal out of the nonlinear element.
Dividing both the numerator and the denominator of the right-hand side of equation (2.5) by $\Theta_{i n}$.

$$
\begin{equation*}
\alpha=\frac{\Theta_{b} / \Theta_{i n}}{\Theta_{e} / \Theta_{i n}} \tag{2.6}
\end{equation*}
$$

Referring to figure (2.3) for the saturation element. $\Theta_{b}=10$ when Θ_{e} is greater than 10 . When $\Theta_{e} \leq 10, \Theta_{b}=\Theta_{e}$ and α is equal to unity.

Substituting $\Theta_{i n}=20$ into equation (2.6) yields,

$$
\begin{equation*}
\alpha=\frac{\Theta_{0} / 20}{\Theta_{e} / \Theta_{i n}} \tag{2.7}
\end{equation*}
$$

Two cases now exist. When $\Theta_{e} \leq 10, \Theta_{e}=\Theta_{b}$ and

$$
\begin{equation*}
\alpha=\frac{\Theta_{e} / 20}{\Theta_{e} / 20}=1.0 \quad \Theta_{e} \leq 10 \tag{2.8a}
\end{equation*}
$$

When $\Theta_{e}>10, \Theta_{b}=10$ and

$$
\begin{equation*}
\alpha=\frac{.5}{\Theta_{e} \cdot \Theta_{i n}} \quad \Theta_{e} \geqslant 10 \tag{2.8b}
\end{equation*}
$$

From equations (2.8a) and (2.8b), a table may be drawn up giving the gain of the saturation element as a function of $\frac{\Theta_{e}}{\Theta_{i n}}$. This table would be the same for the saturation element in the main feedback path, by replacing Θ_{e} by $\Theta_{\text {out' }}$ Θ_{b} by Θ_{a} and α by β. Equations (2.8a) and (2.8b) become,

$$
\begin{array}{ll}
\beta=\frac{\Theta_{\text {out }} / 20}{\Theta_{\text {out }} / \Theta_{\text {in }}}=1.0 & \Theta_{\text {out }}<10.0 \\
\beta=\frac{.5}{\Theta_{\text {out }} / \Theta_{\text {in }}} & \Theta_{\text {out }} \geq 10.0 \tag{2.9b}
\end{array}
$$

This table for the saturation element is table (II.la). To use it, enter the left-hand column with $\frac{\Theta_{e}}{\Theta_{i n}}$ or $\frac{\Theta_{\text {out }}}{\Theta_{i n}}$ and read the corresponding value of α or β respectively.

In like manner the dead zone device can be dealt with. Referring once again to figure (2.2)

$$
\begin{equation*}
\alpha=\frac{\Theta_{\mathrm{b}}}{\Theta_{e}} \tag{2.5}
\end{equation*}
$$

Dividing again by $\Theta_{i n}$ and substituting,
$\alpha=\frac{\Theta_{b} / \Theta_{i n}}{\Theta_{e} / \Theta_{i n}}=\frac{\Theta_{b} / 20}{\Theta_{e} / \Theta_{i n}}$
Looking at figure (2.3b), it is seen that for all input signals into the dead zone element, in this case Θ_{e}, less than 10.0, the output, Θ_{b}, is zero. Therefore,

$$
\begin{equation*}
\alpha=\frac{0.0 / 20}{\Theta_{e} / \Theta_{i n}}=0.0 \quad \Theta_{e} \leq 10.0 \tag{2.10a}
\end{equation*}
$$

And for Θ_{e} greater than 10.0 ,
$\alpha=\frac{\Theta_{b} / 20}{\Theta_{e} / \Theta_{i n}}$

$$
\begin{equation*}
\Theta_{e} \geq 10.0 \tag{2.10b}
\end{equation*}
$$

For the dead zone in the main feedback path, substitution once again obtains,

$$
\begin{array}{ll}
\beta=\frac{0.0 / 20}{\Theta_{\text {out }} / \Theta_{\text {in }}}=0.0 & \Theta_{\text {out }} \leq 10.0 \\
\beta=\frac{\Theta_{a} / 20 .}{\Theta_{\text {out }} / \Theta_{\text {in }}} & \Theta_{\text {out }}>10.0 \tag{2.1lb}
\end{array}
$$

From equations (2.11a) and (2.1lb) and figure (2.3b).

$\frac{\Theta_{e}}{\Theta_{i n}} \text { or } \frac{\Theta_{\text {out }}}{\Theta_{i n}}$	Saturation Element α or β	Dead Zone Element α or β
0.00	1.000	0.000
0.25	1.000	0.000
0.50	1.000	0.000
0.75	0.670	0.333
1.00	0.500	0.500
1.25	0.400	0.600
1.50	0.333	0.666
1.75	0.28	0.715
2.00	0.25	0.750
2.25	0.22	0.778
2.50	0.20	0.800
2.75	0.18	0.817
3.00	0.17	0.834
3.25	0.15	0.846
3.50	0.14	0.857
3.75	0.13	0.868
4.00	0.125	0.875
4.25	0.118	0.880
4.50	0.112	0.887
4.75	0.105	0.894
5.00	0.100	0.900
5.25	0.095	0.905
5.50	0.091	0.910
5.75	0.087	0.914
6.00	0.083	0.917
6.25	0.080	0.920
6.50	0.077	0.923
675	0.074	0.926
7.00	0.071	0.929
7.50	0.067	0.932
8.00	0.063	0.938
8.50	0.059	0.941
9.00	0.055	0.945
9.50	0.053	0.948
10.00	0.050	0.950

Table II $\left.a \& b \quad a_{0}\right) \alpha$ and β as Functions of $\frac{\Theta_{e}}{\Theta_{i n}}$ for the Saturation Element b.) α and β as Functions of $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ for the Dead Zone Element
a table similar to table (II.la) can be drawn up for the dead zone element. This table is table (II.lb). Once again enter with either $\frac{\Theta_{e}}{\Theta_{i n}}$ or $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ and α or β can be read off respectively.

The next step in obtaining the frequency response is to find a relationship between the nonlinear gain, α or β, and the frequency. A relationship between the nonlinear gain and the signal into the element was just shown. Using the PARAMS program, a relationship between α or β and frequency can be found. The PARAM-5 part of the program does this. Given a transfer function, it will draw a plot of gain, α or β, versus the magnitude of the transfer function with constant frequency lines drawn.

The case of the nonlinearity in the forward path will be considered first. In this case $\beta=1.0$ and $\Theta_{a}=\Theta_{\text {out }}$. Looking at figure (2.2),

$$
\begin{equation*}
\Theta_{e}=\Theta_{i n}-\Theta_{\text {out }} \tag{2.12}
\end{equation*}
$$

Divide both sides of equation (2.12) by $\Theta_{i n}$

$$
\begin{equation*}
\frac{\Theta_{e}}{\Theta_{i n}}=1-\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}} \tag{2.13}
\end{equation*}
$$

$\frac{\Theta_{\text {out }}}{\text { Oin } \text { has already been computed as equation (2.4) }}$

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}=\frac{600 \alpha}{s^{4}+18 s^{3}+95 s^{2}+150 s+600 \alpha \beta} \tag{2.4}
\end{equation*}
$$

Substituting equation (2.4) into equation (2.13) and letting $\beta=1.0$.

$$
\begin{equation*}
\frac{\Theta_{e}}{\Theta_{i n}}=\frac{s^{4}+18 s^{3}+95 s^{2}+150 s}{s^{4}+18 s^{3}+95 s^{2}+150 s+600 \alpha} \tag{2.14}
\end{equation*}
$$

Using equation (2.14) and letting α vary between 0.0 and 1.5, a plot as described in the previous paragraph is obtained by the PARAM-5 subprogram of the PARAMS program.

This plot is figure (2.4), with α, the nonlinear gain in the forward path as the ordinate and $\frac{\theta_{e}}{\theta_{i n}}$ as the abscissa. Constant ω lines, $\omega=0.4,0.6,0.8,1.0,1.2,1.4,1.6$, $1.8,2.0,2.2,2.4,2.6,2.8,3.0,3.2$ and 3.4 , were drawn by the PARAMS program. Using table (II.la) and table (II.lb), constant $\Theta_{i n}$ lines are drawn on figure (2.4) for the saturation element and for the dead zone element. The constant $\Theta_{i n}$ lines are drawn using α and $\frac{\Theta_{e}}{\Theta_{i n}}$ as the coordinates.

After drawing the constant $\Theta_{i n}$ curves on figure (2.4), it is seen that these curves intersect the constant omega curves in several places. The intersection of the constant $\Theta_{i n}$ curves with the constant omega curves, with the associated value of α at each intersection, determines a relationship between α, the nonlinear gain, and ω, the frequency of the overall system. With this relationship between α and ω, the total frequency response will be obtained. Figure (2.4) shows a pair of relationships, one

for the saturation element and the other for the dead zone element. These two are in no way related to each other. They are both shown on the same plot so as to analyze two different cases at one time.

The final step in the analysis is obtaining the frequency response itself. Once again the PARAMS program is used. The PARAM-7 subprogram of the PARAMS program gives a frequency response plot with constant α or β lines drawn on it. Because (for this analysis) the closed loop frequency response is desired, a plot of $\frac{o u t}{\Theta_{i n}}$ magnitude (dB) versus frequency with constant α curves is obtained. This is figure (2.5) with α curves of $\alpha=0.0,0.1,0.2,0.3$, $0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4$, and 1.5 drawn on it.

Now using the relation that was found in figure (2.4) between α and ω through the intersection of the constant ω curves and the constant ω curves, these points are plotted on figure (2.5). The coordinates to transfer these points from figure (2.4) to figure (2.5) are α and ω. Where there is no exact α or ω line on figure (2.5), interpolation is used.

When looking at figure (2.5) it should be noted that the saturation frequency response shows some jump resonance around its resonance peak. This is characteristic of saturation elements and can be predicted from figure (2.4).

Figure 2.5 closed loop frequency response of the servomechanism with a nonlinearity in the forward path

To do this, trace the constant $\Theta_{i n}$ saturation curve in figure (2.4) from left to right. Note that it intersects the constant $\omega=1.4$ curve twice giving two values of nonlinear gain, α, for $\omega=1.4$. This is part of the jump resonance effect and will be looked at more closely in Chapter 4.

To test the results of this graphical analysis, an analog simulation of the system was performed and the actual frequency response was obtained. How this simulation was performed and how the nonlinear elements were simulated is explained in Appendix A. The analog results are plotted on figure (2.5) as 'x'. The analog simulation was close enough to justify the conclusion that the graphical analysis was accurate in predicting the frequency response. Any difference between the predicted response and actual response is due to errors in graphical construction, reading of the graph and tolerance in the simulating equipment.

The main effort of this thesis is directed to closed loop frequency response. However, the open loop frequency response may be obtained in the same manner as the closed loop response. The means of obtaining the open loop response is in the final step of the analysis. When using the PARAM-7 subroutine of the PARAMS program, instead of using the closed loop transfer function, the open loop transfer function should be used. The plot that should be
obtained is the open loop magnitude ($d B$) versus frequency with constant α curves drawn on the plot by the program. For this first case the plot is figure (2.6). The phase curve is superimposed for more information. The next step is the same as in the first case. Using the coordinate values of α and ω found in figure (2.4), redraw the constant $\Theta_{i n}$ curves on figure (2.6). The result is the open loop frequency response for a system with either saturation or dead zone in the forward path.

The next case in this example is a nonlinear element in the main feedback path. In this case $\alpha=1.0$ and $\Theta_{\text {out }}$ is the signal into the nonlinear element as shown in figure (2.2). Equations (2.9a), (2.9b), (2.1la), and (2.11b) have been developed for the nonlinear element in the main feedback path and the results tabulated in table (2.la) for a saturation element and table (2.1b) for a dead zone element.

Using the PARAM-5 subprogram of the PARAMS program, a plot of β, the nonlinear gain in the main feedback path, versus the magnitude of $\frac{o u t}{\Theta_{i n}}$ is obtained in the same manner as for figure (2.4). This plot is figure (2.7) and shows β between 0.0 and 1.5 as the ordinate and $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ as the abscissa with constant ω curves of $\omega=0.4,0.6,0.8,1.0,1.2,1.4$, $1.6,1.8,2.0,2.2,2.4,2.6,3.0,3.2$, and 3.4 drawn by the program on the plot.

Figure 2.6 Open loop frequency response for a saturation and dead zone elements in the forward path

The next step in the analysis is the same as in the first case. Using the values in table (II-la) and table (II-lb), constant $\Theta_{i n}$ curves for saturation and dead zone are drawn on figure (2.7). The coordinates for drawing these two curves on figure (2.6) are β and $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$. The intersection in figure (2.6) of the constant $\Theta_{\text {in }}$ curves with the constant ω curves with an associated β for each intersection, gives the relationship between the nonlinear gain, β and ω for the system.

The final step in this analysis of the second case is the obtaining of the closed loop frequency response. As in the first case, the PARAM-7 subprogram of the PARAMS program is used. Using equation (2.4) with $\alpha=1.0$ figure (2.8) is obtained with the magnitude of $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}(\mathrm{dB})$ as the ordinate and frequency as the abscissa. Constant β lines of $\beta=0.0$, $0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2$, 1.3, 1.4, 1.5 are drawn on the plot by the program.

Using the coordinate of the intersection on the constant $\Theta_{i n}$ curves and the constant ω curves, that is β and ω, the constant $\Theta_{i n}$ curves are drawn on figure (2.8). These curves on figure (2.8) give the closed loop frequency response of the overall system for a saturation element in the main feedback path and for a dead zone element. Note that there is no jump resonance in either response. This is as predicted by looking at figure (2.7) and observing that neither constant $\Theta_{i n}$ curves intersects a constant omega

3

Figure 2.8 Closed loop frequency response for servomechanism with a nonlinearity in the feedback path
curve more than once. This could have occurred in both cases, saturation and dead zone, if the constant $\Theta_{\text {in }}$ curves had been shifted sufficiently to the right in figure (2.7). The shifting to the right of the constant $\Theta_{i n}$ saturation curve corresponds to raising the value at which the signal saturates. The shifting of the constant $\Theta_{i n}$ dead zone curve to the right corresponds to increasing the area of dead zone.

The results in this second case, a nonlinearity in the main feedback path, were also checked by analog simulation. The simulation results are plotted with 'x' and correspond enough to verify that the graphical analysis is correct.
C. STEPS IN THE ANALYSIS

The steps in the analysis are listed below for ease in following the process. The use of the PARAMS program makes this analysis realizable because of its speed and ease of calculation. At the present time, the PARAMS program is limited to a 49 th order system.

1. Draw the block diagram of the system, with the nonlinear element as a separate block. In order to use this technique, the nonlinearity must be a single-valued type.
2. Write the transfer function of the closed loop system. Also write the transfer function of the signal preceding the nonlinearity with respect to the input signal
into the system. In some cases these two transfer functions may be the same as in the case in this chapter where the nonlinearity was in the main feedback path.
3. Using the PARAMS program, or its equivalent, obtain a plot of the nonlinear gain versus the magnitude transfer function of the signal into the nonlinearity. This plot should have drawn on it constant ω curves for the frequencies of interest.
4. Obtain a relationship between the nonlinear gain and magnitude of the transfer function of the signal into the nonlinearity. This can be done several ways, one of which is described in this chapter.
5. Plot this relationship found in step 4 onto the plot drawn in step 3 using the nonlinear gain and transfer function magnitude as the coordinates. This is the constant $\Theta_{i n}$ curve.
6. The intersection of the constant $\Theta_{\text {in }}$ curve and the constant ω curves gives an associated value of nonlinear gain for each intersection. These intersections give the relationship between the nonlinear gain and frequency. In some cases there may be more than one associated value of gain for a certain frequency. This can be ascribed to a jump resonance effect.
7. Again using the PARAMS program or its equivalent, obtain a standard frequency response plot, either open or closed loop, with constant nonlinear gain curves drawn on
it. The values of nonlinear gain curves must correspond to the range of nonlinear gain found in step 6 .
8. Using the values of nonlinear gain and frequency found in step 6 as coordinates, replot the constant $\Theta_{\text {in }}$ curve on the plot found in step 7. This gives the closed or open loop frequency response - whatever the case may be - of a system with a nonlinear element to a constant magnitude input signal.
D. FURTHER INVESTIGATION OF THE JUMP RESONANCE EFFECT The frequency response for the system with saturation in the forward path, figure (2.5), shows a jump resonance around $\omega=1.4$. This jump resonance is to be expected with a nonlinear device. In Chapter 4 this effect will be shown for a dead zone element. To illustrate this jump resonance more clearly, another example will be shown here. The example is a second order feedback system which is used as an example in a nonlinear control textbook. ${ }^{2}$ Its block diagram is figure (2.9).

By letting α represent the variable gain of the saturation element, the closed loop transfer function may be written as.

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}=\frac{200 \alpha}{s^{2}+s+200 \alpha} \tag{2.15}
\end{equation*}
$$

2
Thaler, G. J. and Pastel, M.P., Analysis and Design of Nonlinear Feedback Control Systems, p. 198, McGraw-Hill, 1952 .

Figure 2.9 Block diagram of a servo with saturation

What is desired is the frequency response with a constant input magnitude. $\Theta_{i n}$ is chosen to be $\Theta_{i n}=2.0$.

Following the steps in the analysis technique, the transfer function of the signal preceding the nonlinear element with respect to $\Theta_{i n}$, that is $\frac{e}{\Theta_{i n}}$, is derived

$$
\begin{equation*}
\Theta_{e}=\Theta_{i n}-\Theta_{\text {out }} \tag{2.16}
\end{equation*}
$$

Dividing by $\Theta_{i n}{ }^{\prime}$

$$
\begin{equation*}
\frac{\Theta_{e}}{\Theta_{i n}}=1-\frac{\Theta_{o u t}}{\Theta_{i n}} \tag{2.17}
\end{equation*}
$$

And substituting equation (2.15) into equation (2.17),

$$
\begin{equation*}
\frac{\Theta_{e}}{\Theta_{i n}}=\frac{s^{2}+s}{s^{2}+s+200 \alpha} \tag{2.18}
\end{equation*}
$$

By using the PARAMS-5 subprogram of the PARAMS and equation (2.18) , a plot of α versus $\frac{\Theta_{e}}{\Theta_{i n}}$ with constant ω curves is obtained. This plot is figure (2.10).

Next the relation between $\frac{\Theta_{e}}{\Theta_{i n}}$ and α is found.
Referring to figure (2.9)
$\alpha=\frac{\theta_{b}}{\theta_{e}}$
Dividing both the numerator and denominator of the right-hand side of equation (2.19) by $\Theta_{i n}$.

$$
\begin{equation*}
\alpha=\frac{\Theta_{b} / \Theta_{i n}}{\Theta_{e} / \Theta_{i n}} \tag{2.20}
\end{equation*}
$$

and when $\Theta_{e} \leqslant 20, \alpha=1$ and when $\Theta_{2} 20$ 黄 $=2.0$ as the element goes into saturation. Two cases exist for $\Theta_{i n}=2.0$.

$$
\begin{array}{ll}
\alpha=1.0 & \frac{\Theta_{e}}{\Theta_{i n}} \leq 1.0 \\
\alpha=\frac{1.0}{\Theta_{e} / \Theta_{i n}} & \frac{\Theta_{e}}{\Theta_{i n}} \geq 1.0
\end{array}
$$

With equations (2.2la) and (2.21b), a table is con-
 This table is table (II.2) where $0.0 \leq \frac{\Theta_{e}}{\Theta_{i n}} \leq 10.0$.

Using the values in the table, the constant $\Theta_{i n}$ curve is plotted on figure (2.10). The intersection of this constant $\Theta_{i n}$ curve and the ω curves in figure (2.10) gives the relation between ω and α for a constant $\Theta_{i n}=2.0$.

The closed loop frequency response of the servo can now be obtained for a $\Theta_{i n}=2.0$. Using the PARAM-7 subprogram and equation (2.15), a plot of $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}(\mathrm{dB})$ versus ω is obtained. This is figure (2.11) and has constant α curves of $\alpha=0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4$, $0.45,0.5,0.55,0.6,0.7,0.8,0.9$ and 1.0 plotted on it. Using the coordinates of α and ω for the constant $\Theta_{\text {in }}$ curve in figure (2.10) o the constant $\Theta_{\text {in }}$ curve is replotted onto figure (2.11). As may be seen, there is a large jump resonance effect between $\omega=6.0$ and $\omega=10.0$.

The jump resonance effect can also be seen in the phase curve of this exampie. The technique is similar to that of drawing the magnıtude frequency response. Using

$\frac{\Theta_{e}}{\Theta_{i n}}$	α
0.0	1.0
0.5	1.0
1.0	1.0
1.5	0.667
2.0	0.500
2.5	0.400
3.0	0.333
3.5	0.286
4.0	0.250
4.5	0.222
5.0	0.200
5.5	0.182
6.0	0.154
6.5	0.143
7.0	0.133
7.5	0.125
8.0	0.118
8.5	0.111
9.0	0.105
9.5	0.100
10.0	

Table II. 2
α as a Function of $\frac{\Theta_{e}}{\Theta_{i n}}$ for the
Saturation Element

Figure 2.11 closed loop inagnitude frequency response for a a servo with saturation
the PARAM-7 subprogram again, a plot of the phase of $\frac{\Theta_{\text {out }}}{\Theta_{i n}}$ versus omega with the same constant α curves is drawn. This is figure (2.12). Using the coordinates of α and $\boldsymbol{\omega}$ from figure (2.10), the constant $\Theta_{\text {in }}$ curve is drawn on the phase plot, figure (2.12). The jump resonance effect is seen again, though not as pronounced.

Figure 2.12 Closed loop phase frequency response for the servo with saturation

III. FURTHER EXAMPLES OF NONLINEAR FREQUENCY RESPONSE ANALYSIS

A. INTRODUCTION

In this chapter, six examples are worked in order to further verify the validity of the analysis technique. Saturation, dead zone, an ideal relay, and coulomb frction plus stiction are the nonlinearities used in the examples. These nonlinearities are placed in various positions in the systems including the forward path and the minor feedback path. The first four examples were checked by analog simulation. Also in all six examples $\Theta_{i n}$ was assumed to be of magnitude $\Theta_{i n}=10.0$.

B. FIRST EXAMPLE

The first example to be worked is a third order system with a saturation element in the forward path. Its block diagram is figure (3.1) where α represents the variable nonlinear gain of the saturation element. From figure (3.1).
$\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}=\frac{9 \alpha}{s^{3}+s^{2}+16.25 s+9 \alpha}$
The saturation element has unity gain for Θ_{e} signals less than 50.0. Signals into the element greater than 50.0

Figure 3.1 Block diagram of example \#l where represents the variable gain of the saturation element
are limited so that the output of the element is 50.0 . The input-output diagram of the element is figure (3.2). Referring to figure (3.1)。

$$
\begin{equation*}
\alpha=\frac{\Theta_{b}}{\Theta_{e}} \tag{3.2}
\end{equation*}
$$

Dividing both the numerator and the denominator of the right-hand side of equation (3.2) by $\Theta_{i n}$

$$
\begin{equation*}
\alpha=\frac{\Theta_{j} / \Theta_{i n}}{\Theta_{e} / \Theta_{i n}} \tag{3.3}
\end{equation*}
$$

For a $\Theta_{i n}=10.0$, equation (3.3) can be divided into two parts.
$\alpha=1.0$

$$
\begin{equation*}
\frac{\Theta_{e}}{\Theta_{i n}} \leq 5.0 \tag{3.4a}
\end{equation*}
$$

$$
\begin{equation*}
\alpha=\frac{5.0}{\Theta_{e} / \Theta_{i n}} \tag{3.4b}
\end{equation*}
$$

$$
\frac{\Theta_{e}}{\Theta_{i n}} \geq 5.0
$$

Equations (3.4a) and (3.4b) define the relationship between α and $\frac{\Theta_{e}}{\Theta_{i n}}$. It was seen in the previous chapter that this relationship is necessary to obtain the frequency response. These equations are tabulated in table (II.I). where the left-hand column is $\frac{\Theta_{e}}{\Theta_{i n}} \Theta^{\text {and } \alpha}$ is the value of nonlinear gain for the particular $\frac{e}{\Theta_{i n}}$.

Figure 3.2 Saturation element of example \#l

Having obtained the relationship between α and $\frac{\Theta_{e}}{\Theta_{i n}}$, the relationship between α and \mathfrak{w} is found. Referring to figure (3.1),

$$
\begin{align*}
& \Theta_{e}=\Theta_{\text {in }}-\Theta_{\text {out }} \\
& \frac{\Theta_{e}}{\Theta_{i n}}=\frac{\Theta_{i n}-\Theta_{\text {out }}}{\Theta_{i n}}=1-\frac{\Theta_{\text {out }}}{\Theta_{i n}} \tag{3.5}
\end{align*}
$$

Substituting equation (3.1) into equation (3.5).

$$
\begin{equation*}
\frac{\Theta_{e}}{\Theta_{i n}}=\frac{s^{3}+s^{2}+16.25}{s^{3}+s^{2}+16.25+9 \alpha} \tag{3.6}
\end{equation*}
$$

Using equation (3.6) and the PARAM-5 subprogram, figure (3.3) is obtained where α is the abscissa and is the ordinate. Constant ω curves are drawn on figure ${ }_{\mathrm{i} \mathrm{e}^{\prime}}$ (3.3).

A constant $\Theta_{i n}$ curve is then drawn on figure (3.3) using the coordinates of α and $\frac{\Theta_{e}}{\Theta_{i n}}$ taken from table (III.1). The intersection of the constant $\Theta_{i n}$ curve and the $\boldsymbol{\omega}$ curves gives the relationship between α and ω for this analysis.

The next step is drawing the closed loop frequency response. A plot is made, using equation (3.1) and the PARAM-7 subprogram, of $\frac{\Theta_{\text {out }}}{\Theta_{i n}}(d B)$ versus ω. This plot is figure (3.4) and has constant α curves on it over the range of α that is used. Using the coordinates of α and ω

Θ_{e}	
$\Theta_{i n}$	α
0.0	1.0
1.0	1.0
2.0	1.0
3.0	1.0
4.0	0.033
5.0	0.715
6.0	0.625
7.0	0.500
8.0	0.454
9.0	0.416
10.0	0.385
11.0	0.357
12.0	0.333
13.0	14
14.0	1.0

Table III.1 α as a function of $\frac{\Theta_{e}}{\theta_{i n}}$ for the Saturation Element in Example \#l

Figure 3.4 closed loop frequency response of example \#l
from figure (3.3), the constant $\Theta_{\text {in }}$ curve is redrawn on figure (3.4). This constant $\Theta_{\text {in }}$ curve on figure (3.4) is the closed loop frequency response of the first example with the saturation element in the system. The analog simulation is denoted by 'x'.

C. SECOND EXAMPLE

The second example used for analysis is a third order system with a dead zone element in the tachometer feedback path. The block diagram of the system is figure (3.5) where β represents the variable nonlinear gain of the dead zone element. From figure (3.5), the closed loop transfer function is written,

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}=\frac{9}{\mathrm{~s}^{3}+16.25 \mathrm{~s}+9+\beta_{\mathrm{s}}^{2}} \tag{3.7}
\end{equation*}
$$

The dead zone element is shown in figure (3.6). For a Θ_{a} less than 4.0, Θ_{d}, the output, is zero. For a constank input of $\Theta_{i n}=10.0$, this condition exists when $\frac{\Theta_{a}}{\Theta_{i n}}$ is less than 0.4. In equation form,

$$
\begin{equation*}
\beta=\frac{\Theta_{d}}{\Theta_{a}}=\frac{0.0}{\Theta_{a}}=0.0 \quad \frac{\Theta_{a}}{\Theta_{i n}} \leq 0.4 \tag{3.7}
\end{equation*}
$$

From figure (3.6), it is seen that for Θ_{a} greater than 4.0, $\Theta_{d}=3\left(\Theta_{a}-4.0\right)$. Thus.

$$
\begin{equation*}
\beta=\frac{\Theta_{d}}{\Theta_{a}}=\frac{3\left(\Theta_{a}-4.0\right)}{\Theta_{a}} \quad \Theta_{a} \geq 4.0 \tag{3.8}
\end{equation*}
$$

Figure 3.5 Block diagram of example \#2 where β represents the variable gain of the dead zone element

Figure 3.6 Dead zone element of example \#2

Dividing the numerator and denominator of the right-

 hand side of equation (3.8) by $\Theta_{\text {in }}$ when $\Theta_{\text {in }}=10.0$.$$
\begin{equation*}
\beta=\frac{\left(3 \Theta_{a}-120\right) / \Theta_{i n}}{\Theta_{a} / \Theta_{i n}}=\frac{\frac{3 \Theta_{a}}{\Theta_{i n}}-12.0}{\Theta_{a} / \Theta_{i n}} \frac{\Theta_{a}}{\Theta_{i n}} \geq 0.4 \tag{3.9}
\end{equation*}
$$

Equations (3.7) and (3.9) give the relation between β Θ and $\frac{e}{\Theta_{i n}}$. From these two equations, a table has been tabulated of β as a function $\frac{\Theta_{a}}{\Theta_{i n}}$ over the range of $\frac{\Theta_{a}}{\Theta_{i n}}$ desired. This table is table (III.2) where $\frac{\Theta_{a}}{\Theta_{i n}}$ is the left-hand column and β is the value read out for the corresponding value of $\frac{\Theta_{a}}{\Theta_{i n}}$.

Having found the relationship between β and $\frac{\Theta_{a}}{\Theta_{\text {in }}}$, the relationship between β and ω is now found. Referring to figure (3.5),

$$
\begin{equation*}
\frac{\Theta_{a}}{\theta_{\text {out }}}=s \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}=\frac{9}{s^{3}+16.25 s+9+\beta s^{2}} \tag{3.7}
\end{equation*}
$$

Multiplying equation (3.10) by equation (3.7),

$$
\begin{equation*}
\frac{\Theta_{a}}{\Theta_{i n}}=\frac{9 s}{s^{3}+16.25 s+9+\beta s^{2}} \tag{3.11}
\end{equation*}
$$

$\frac{\Theta_{a}}{\Theta_{i n}}$	β
0.0	0.0
0.05	0.0
0.10	0.0
0.15	0.0
0.20	0.0
0.25	0.0
0.30	0.0
0.35	0.0
0.40	0.0
0.45	0.333
0.50	0.600
0.55	0.819
0.60	1.00
0.65	1.16
0.70	1.28
0.75	1.40
0.80	1.50
0.85	1.59
0.90	1.67
0.95	1.74
1.00	1.80

Table III. $2 \quad \beta$ as a Function of $\frac{\Theta_{a}}{\Theta_{i n}}$ for the Dead Zone Element of Example \#2

Using equation (3.1l) and the PARAM-5 subprogram, a plot of β versus the magnitude of $\frac{\Theta_{a}}{\Theta_{i n}}$ is obtained. This is figure (3.7) and has constant ω curves of $\omega=1.0,2.0$, $3.0,3.5,3.7,3.8,3.9,4.0,4.1,4.2,4.3,4.4,5.0,6.0$, 7.0 and 10.0 drawn on it.

The constant $\Theta_{i n}$ curve for the dead zone element of this example has been drawn on figure (3.7). The coordinates for this curve are β and $\frac{\Theta_{a}}{\Theta_{i n}}$, and were taken from table (III.2). The intersection of the constant $\Theta_{i n}$ curve and the $\boldsymbol{\omega}$ curves in figure (3.7) gives the relationship between β and ω for the system. Using this new relationship, the closed loop frequency response can now be drawn.

Equation (3.7) and the PARAM-7 subroutine are used to obtain a plot of $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ versus ω with constant β curves over the range of $\beta=0.0,0.1,0.2,0.4,0.6,0.8,0.9$, and 1.0. Using the coordinates of β and ω for the constant $\Theta_{i n}$ curve on figure (3.7), the constant $\Theta_{\text {in }}$ curve is redrawn on figure (3.8). This constant $\Theta_{i n}$ curve on figure (3.8) gives the closed loop frequency response of this second example with the dead zone element of figure (3.6) in the tachometer feedback path. The frequency response was checked by analog simulation and is denoted by 'x'.
D. THIRD EXAMPLE

The third example is a fourth order system with a dead zone element in the forward path. The block diagram is figure (3.9) where α represents the variable gain of the

Figure 3.8 closed loop frequency response of example \#2

Figure 3.9 Block diagram of example \#3 where α represents the variable gain of the dead zone element
dead zone element. Θ_{e} is the signal going into the element and Θ_{b} is the signal coming out of the element. From figure (3.9), the closed loop transfer function is,

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}=\frac{14.5 \alpha}{s^{4}+13 s^{3}+51 s^{2}+63 s+\left(s^{3}+10 s^{2}+21 s+14.5\right) \alpha} \tag{3.12}
\end{equation*}
$$

The dead zone element is shown in figure (3.10) where the ordinate is Θ_{b} and the abscissa is Θ_{e}. The dead space extends to $\Theta_{e}=50.0$. For a Θ_{e} greater than 50.0, the gain of the element is two. From figure (3.9),
$\beta=\frac{\Theta_{b}}{\Theta_{e}}$
For $\Theta_{e} \leq 50.0$,

$$
\beta=\frac{0.0}{\theta_{e}}=0.0 \quad \frac{\Theta_{e}}{\theta_{i n}} \leq 5.0
$$

For $\Theta_{e} \geq 50.0, \Theta_{b}$ can be written as,

$$
\begin{equation*}
\theta_{b}=2\left(\theta_{e}-50.0\right)=2 \theta_{e}-100.0 \tag{3.15}
\end{equation*}
$$

Substituting equation (3.15) into equation (3.13),
$\beta=\frac{2 \Theta_{e}-100.0}{\Theta_{e}}$

$$
\begin{equation*}
\Theta_{\mathrm{e}} \geq 50.0 \tag{3.16}
\end{equation*}
$$

Figure 3.10 Dead zone element of example \#3

Dividing the numerator and denominator of the righthand side of equation (3.16) by $\Theta_{i n}$ and realizing that when $\Theta_{e} \geq 50.0, \frac{e}{\Theta_{i n}}=10.0$, equation (3.16) becomes,

$$
\begin{equation*}
\beta=\frac{\frac{2 \Theta_{e}}{\Theta_{i n}}-10.0}{\Theta_{e} / \Theta_{i n}} \quad \frac{\Theta_{e}}{\Theta_{i n}} \geq 5.0 \tag{3.17}
\end{equation*}
$$

From equations (3.14) and (3.16) a table of α as a function of $\frac{\Theta_{e}}{\Theta_{i n}}$ is computed. This table is table (III.3) and has $\frac{\Theta_{e}}{\Theta_{i n}}$ in the left-hand column and the corresponding value of α in the right-hand column. The table gives the relationship between α and $\frac{\Theta_{e}}{\Theta_{i n}}$ for a constant $\Theta_{\text {in }}=10.0$.

After finding the relationship between α and $\frac{e}{\Theta_{i n}}$. the relationship between α and ω is found. Referring to figure (3.9) the transfer function of $\frac{\Theta_{e}}{\Theta_{i n}}$ is,

$$
\begin{equation*}
\frac{\Theta_{e}}{\Theta_{i n}}=\frac{14 . s^{2}+145 s+304.5}{s^{4}+13 s^{3}+51 s^{2}+63 s+\left(s^{3}+10 s^{2}+21 s+14.5\right) \alpha} \tag{3.18}
\end{equation*}
$$

Using equation (3.18) and the PARAM-5 subprogram, a plot of α versus $\frac{\Theta_{e}}{\Theta_{i n}}$ is made. This plot is figure (3.11) and has ω curves of $\omega=0.0,0.025,0.05,0.75,0.1,0.2$, $0.3,0.4,0.5,0.6,0.7,0.8,0.9$ and 1.0 plotted on it.

The constant $\Theta_{i n}$ curve is pl_{Θ} otted on figure (3.11) using the coordinates of α and $\frac{\Theta_{e}}{\Theta_{i n}}$ tabulated in table (III.3). The intersection of this constant $\Theta_{\text {in }}$ curve

$\frac{\Theta_{e}}{\Theta_{i n}}$	α
0.0	0.0
1.0	0.0
2.0	0.0
3.0	0.0
4.0	0.0
5.0	0.0
6.0	0.333
7.0	0.57
8.0	0.75
9.0	0.89
10.0	1.00
11.0	1.09
12.0	1.17
13.0	1.23
14.0	1.28
15.0	1.33
16.0	1.37
17.0	1.41
18.0	1.44
19.0	1.47
20.0	1.50

Table III. $3 \quad \alpha$ as a Function of $\frac{\Theta_{e}}{\Theta_{i n}}$ for the Dead Zone Element of Example \#3.

and the ω curves, at the associated value of α, gives the relationship between α and ω for $\Theta_{\text {in }}=10.0$.

The final step in the analysis is construction of the closed loop frequency response. Using equation (3.12) in the PARAM-5 subprogram, a plot of $\frac{\Theta_{\text {out }}}{\Theta_{i n}}(\mathrm{~dB})$ versus ω, with constant α lines, is made. This plot is figure (3.12). The constant $\Theta_{i n}$ curve is replotted onto figure (3.12) from figure (3.11) using α and ω as coordinates. This constant $\Theta_{\text {in }}$ curve in figure (3.12) is the closed loop frequency response of example \#3. An analog simulation of this example was run and the results shown by ' x ' on figure (3.12).

Figure 3.12 closed loop frequency response of example \#3

E. FOURTH EXAMPLE

The fourth example is a fourth order system with a saturation element in a minor feedback path. The analysis is for the closed loop response. Figure (3.13) shows the block diagram of this example where β represents the variable gain of the saturation element in the minor feedback path. Θ_{a} is the signal going into the saturation element and Θ_{d} is the signal coming out of the saturation element. Referring to the block diagram of this example(figure(3.13)), the closed loop transfer function is written,

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}=\frac{14.5}{s^{4}+13 s^{3}+51 s^{2}+63 s+14.5+\beta\left(s^{3}+10 s^{2}+21 s\right)} \tag{3.19}
\end{equation*}
$$

Where β represents the variable gain of the saturation element.

The saturation element for this example is figure (3.14). Θ_{a} is the signal into the element and Θ_{d} is the signal out of the element. The saturation element limits at $\Theta_{a}=20.0$. For a Θ_{a} greater than 20.0 , the output, Θ_{d}, is equal to 20.0. From figure (3.13), β may be written as,

$$
\begin{equation*}
\beta=\frac{\Theta_{d}}{\Theta_{a}} \tag{3.20}
\end{equation*}
$$

For Θ_{a} less than $20.0, \Theta_{a}=\Theta_{d}$ and,

$$
\begin{equation*}
\beta=\frac{\Theta_{a}}{\Theta_{a}}=1.0 \quad \Theta_{a} \leq 20.0 \tag{3.21}
\end{equation*}
$$

Figure 3.13 Block diagram of example \#4 where β represents the variable gain of the saturation element

Figure 3.14 Saturation element of example \#4

Dividing the limits of equation (3.21) by $\Theta_{\text {in }}$ when $\Theta_{i n}=10.0$,

$$
\beta=1.0 \quad \frac{\Theta_{a}}{\Theta_{\text {in }}} \leq 2.0
$$

For Θ_{a} greater than 20.0, $\Theta_{d}=20.0$,

$$
\begin{equation*}
\beta=\frac{\Theta_{d}}{\Theta_{a}}=\frac{20.0}{\Theta_{a}} \quad \Theta_{a} \geq 20.0 \tag{3.23}
\end{equation*}
$$

Dividing the numerator and the denominator of the right-hand side of equation (3.23) by $\Theta_{i n}$ when $\Theta_{i n}=10.0$.

$$
\begin{equation*}
\beta=\frac{\frac{20.0}{\Theta_{i n}}}{\Theta_{a} / \Theta_{i n}}=\frac{2.0}{\Theta_{a} / \Theta_{i n}} \quad \frac{\Theta_{a}}{\Theta_{i n}} \geq 2.0 \tag{3.24}
\end{equation*}
$$

Equations (3.22) and (3.24) define the relationship between β and $\frac{\Theta_{e}}{\Theta_{i n}}$ for a constant $\Theta_{i n}$ equal to 10.0. These equations are put into tabular form and are shown as table (III.4). The left-hand column is $\frac{\Theta_{e}}{\Theta_{i n}}$. Given a certain $\frac{\Theta_{e}}{\Theta_{i n}}$,
, β is read from the right-hand column.
With the relationship between $\frac{\Theta_{e}}{\Theta_{i n}}$ and β established, the relationship between β and ω is now found. Referring to figure (3.13), $\frac{\Theta_{a}}{\Theta_{i n}}$ is written,

$$
\begin{equation*}
\frac{\Theta_{a}}{\Theta_{i n}}=\frac{14.5 s+101.5}{s^{4}+13 s^{3}+51 s^{2}+63 s+14.5+\beta\left(s^{3}+10 s^{2}+21 s\right)} \tag{3.25}
\end{equation*}
$$

Θ_{a}	β
$\Theta_{i n}$	
0.0	1.0
1.0	1.0
2.0	1.0
3.0	0.667
4.0	0.500
5.0	0.400
6.0	0.333
7.0	0.286
8.0	0.250
9.0	0.222
10.0	0.200

Table III.4 β as a function of $\frac{\Theta_{a}}{\Theta_{i n}}$ for the Saturation Element of Example \#4

Using the equation (3.23) in the PARAM-5 subprogram, a plot of β versus $\frac{\Theta_{a}}{\Theta_{i n}}$ is made. This plot is figure (3.15) and has ω curves of $\omega=0.1,0.2,0.3,0.4,0.45,0.5,0.55$, $0.6,0.65,0.7,0.75,0.8,0.9$, and $\Theta^{l .0}$ drawn on it.

With the coordinates of β and $\frac{a}{\Theta_{i n}}$ from table (III.4), the constant $\Theta_{i n}$ curve is drawn on figure (3.15). The intersection of this curve with the ω curves at the associated values of β, gives the relationship between β and ω for a constant $\Theta_{i n}=10.0$.

Using equation (3.19) and the PARAM-7 subprogram, a plot of $\frac{\text { out }}{\Theta_{\text {in }}}$ versus ω has been made. This plot is figure (3.16) and has β curves of $\beta=0.0,0.1,0.2,0.3,0.4$, $0.5,0.6,0.7,0.8,0.9$, and 1.0 drawn on it. Using the coordinates of β and ω, the constant $\Theta_{\text {in }}$ curve is replotted onto figure (3.16). This constant $\Theta_{\text {in }}$ curve on figure (3.16) is the closed loop frequency response for example \#4. The range of ω shown in figure (3.16) is only over the region in which the response deviates from a constant value of β. The response at frequencies above $\omega=0.7$ is the same as if the saturation element were replaced by a gain of one. The analog simulation is shown as ' x ' on figure (3.16).

Figure 3.16 Closed loop frequency response for example \#4

F. FIFTH EXAMPLE

The fifth example is a type 2 feedback control system for a reproducing contour cutting tool. ${ }^{3}$ This system will be analyzed for the open loop frequency response after linear compensation has taken place. The nonlinear element is an ideal relay which has been placed between the compensator and the open loop section of the uncompensated system. The block diagram of this system is figure (3.17) where α represents the variable gain of the relay. The open loop transfer function is,

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{a}}=\frac{225 \alpha\left(s^{2}+5.6 s+7.84\right)}{s^{2}(s+5)\left(s^{2}+37.5 s+350\right)} \tag{3.26}
\end{equation*}
$$

The nonlinear characteristic of the ideal relay in this example is figure (3.18) where Θ_{e} is the signal going into the relay and Θ_{b} is the signal coming out of the relay. For every value of Θ_{e}, Θ_{b} has only one value, $\Theta_{\mathrm{b}}=40$. Referring to figure (3.17), α may be written as,

$$
\begin{equation*}
\alpha=\frac{\Theta_{b}}{\Theta_{e}} \tag{3.27}
\end{equation*}
$$

$$
\Theta_{e} \geq 0.0
$$

3
Del Toro, V. and Parker, S.R. . Principles of Control Systems Engineering, p. 354, McGraw-Hill, 1960.

Figure 3.17 Block diagyam of example \#5 where α represents the variable gain of the relay

Figure 3.18 Ideal relay of example \#5

For $\Theta_{b}=40$. equation (3.27) becomes,

$$
\begin{equation*}
\alpha=\frac{40}{\Theta_{e}} \quad \Theta_{e} \geq 0.0 \tag{3.28}
\end{equation*}
$$

Dividing the numerator and denominator of the righthand side of equation (3.28) by $\Theta_{i n}$ when $\Theta_{i n}=10.0$, equation (3.28) becomes,

$$
\begin{equation*}
\alpha=\frac{4.0}{\frac{\Theta_{e}}{\Theta_{i n}}} \quad \frac{\Theta_{e}}{\Theta_{i n}} \geq 0.0 \tag{3.29}
\end{equation*}
$$

Equation (3.29) gives the relationship between $\frac{\Theta_{e}}{\Theta_{i n}}$ and α.

From equation (3.29) a table for the relay of α as a function of $\frac{\Theta_{e}}{\Theta_{i n}}$ is made up. This is table (III.5) with $\frac{\Theta_{e}}{\Theta_{i n}}$ as the value in the left-hand column and the associated value of α in the right-hand column. This relationship between α and $\frac{\Theta_{e}}{\Theta_{i n}}$ defines the constant $\Theta_{\text {in }}$ curve which will be used later.

Because α is Θ_{e} function of $\frac{\Theta_{e}}{\Theta_{i n}}$ for a constant $\Theta_{i n}$, a plot of α versus $\frac{\Theta_{e}}{\Theta_{i n}}$ is needed. Referring to figure (3.17), the transfer function $\frac{e}{\Theta_{i n}}$ is written as,

$$
\frac{\Theta_{e}}{\Theta_{i n}}=\frac{4.5 s^{5}+47.7 s^{4}+1610 s^{3}+1768 s^{2}}{s^{5}+42.5 s^{4}+537.5 s^{3}+1750 s^{2}+\alpha\left(225 s^{2}+1260 s+1765\right)}
$$

$\frac{\Theta_{\mathrm{e}}}{\Theta_{i n}}$	α
0.0	∞
0.5	8.0
1.0	4.0
1.5	2.67
2.0	2.00
2.5	1.6
3.0	1.33
3.5	1.00
4.0	0.89
4.5	0.80

Table III. $5 \quad \alpha$ as a Function of $\frac{\Theta_{e}}{\Theta_{i n}}$ for the Relay of Example \#5

Using equation (3.30) and the PARAM-5 subprogram, a plot of α versus $\frac{\Theta_{e}}{\Theta_{i n}}$ is made. This plot is figure (3.19) and has drawn on it constant ω curves of $\omega=0.25,0.5$, $0.75,1.0,1.25,1.75,2.0,2.5,3.0,4.0,5.0,7.5,20.0$ and 40.0.

The constant $\Theta_{i n}$ curve is drawn on figure (3.19) using the coordinates of α and $\frac{\Theta_{e}}{\Theta_{i n}}$ from table (III.5). The intersection of this constant $\Theta_{\text {in }}$ curve and the ω curves in figure (3.19) gives the new relationship between α and ω for $a \Theta_{i n}=10.0$. With this final relationship, the open loop frequency response is drawn for the system with the relay.

From equation (3.26) and the PARAM-7 subprogram, a plot of $\frac{\Theta_{a}}{\Theta_{a}}$ (magnitude $-d B$ and phase) versus ω is made. On this plot α curves are drawn of $\alpha=0.7,0.85,1.0,1.1$, $1.25,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0,8.0$ and 15.0. The $\frac{\Theta_{\text {out }}}{\text { in }^{u}}$ versus ω plot is figure (3.20). Note that for different values of α, the phase response is the same. This indicates that the nonlinear element does not change the system from its original linear phase response. The $\alpha=1.0$ curve is the linear open loop magnitude response. Using the coordinates of α and ω, the constant $\Theta_{\text {in }}$ curve on figure (3.19) is replotted onto figure (3.20). The constant $\Theta_{i n}$ curves on figure (3.20) are the open loop magnitude and phase response of example \#5 with an ideal relay.

Figure 3.20 Open loop frequency response of example \#5

G. SIXTH EXAMPLE

The system for the sixth example is similar to the fifth example. The nonlinear element is coulomb friction plus stiction which converts velocity into torque in a minor feedback loop. The block diagram of the system is figure (3.2l) where α represents the coulomb friction plus stiction element. The open loop transfer function is equation (3.31) and is taken from figure (3.21).

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{a}}=\frac{225\left(s^{2}+5.6 s+7.84\right)}{s^{5}+42.5 s^{4}+537.5 s^{3}+1750 s^{2}+\alpha\left(s^{4}+42.5 s^{3}+537.5 s^{2}+1750 s\right)} \tag{3.31}
\end{equation*}
$$

The coulomb friction with stiction element is shown in figure (3.22) where $\dot{\theta}_{\text {out }}$ is the signal going into the element and T_{1} is the signal coming out of the element. For $\dot{\theta}_{\text {out }}$ less than 2.0 , the variable gain can be written as,

$$
\begin{equation*}
\alpha=\frac{4.17-\frac{1}{3} \dot{\Theta}_{\text {out }}}{\dot{\Theta}_{\text {out }}} \quad \dot{\Theta}_{\text {out }} \leq 2.0 \tag{3.32}
\end{equation*}
$$

Dividing the numerator and denominator of the righthand side of equation (3.32) by $\Theta_{\text {in }}$ when $\Theta_{i n}=10.0$, equation (3.32) becomes,

$$
\begin{equation*}
\alpha=\frac{.417-\frac{1}{3} \frac{\dot{\Theta}_{\text {out }}}{\Theta_{\text {in }}}}{\frac{\dot{\Theta}_{\text {out }}}{\Theta_{\text {in }}}} \quad \frac{\dot{\theta}_{\text {out }}}{\Theta_{\text {in }}} \leq 0.2 \tag{3.33}
\end{equation*}
$$

Figure 3.21 Block diagram of example \#6 where α represents the variable gain of the coulomb friction plus stiction element

Figure 3.22 Coulomb friction plus stiction element of example \#6

For $\Theta_{\text {out }}$ greater than 2.0 , the variable gain can be written as,

$$
\begin{equation*}
\alpha=\frac{3.3+.1 \dot{\Theta}_{\text {out }}}{\Theta_{\text {out }}} \quad \dot{\theta}_{\text {out }} \geq 2.0 \tag{3.34}
\end{equation*}
$$

Dividing the numerator and denominator of the righthand side of equation (3.34) by $\Theta_{i n}$ when $\Theta_{i n}=10.0$, equation (3.34) becomes,

$$
\begin{equation*}
\alpha=\frac{.33+.1 \frac{\dot{\Theta}_{\text {out }}}{\Theta_{\text {in }}}}{\Theta_{\text {out }} / \Theta_{\text {in }}} \quad \frac{\dot{\theta}_{\text {out }}}{\Theta_{\text {in }}} \geq 0.20 \tag{3.35}
\end{equation*}
$$

Equations (3.33) and (3.34) define the relationship between α and $\frac{o u t}{\Theta_{i n}}$ for a constant $\Theta_{i n}=10.0$. This relationship is tabulated in table (III.6) where $\frac{\text { out }}{\Theta_{\text {in }}}$ is the left-hand column and α is the right-hand column.

The transfer function of $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ is written from looking at figure (3.21).
$\frac{\dot{\theta}_{\text {out }}}{\Theta_{\text {in }}}=\frac{225 s^{3}+1260 s^{2}+1764 s}{s^{5}+42.5 s^{4}+537.5 s^{3}+1975 s^{2}+1260 s+1764+\alpha\left(s^{4}+42.5 s^{3}+537.5 s^{2}+1750 s\right)}$

Using equation (3.36) and the PARAM-5 subprogram, a plot of α versus $\frac{\sigma_{\text {in }}}{\text { in }^{u t}}$ is made. This plot is figure (3.23) and has constant ω curves between $\omega=0.01$ and $\omega=10.0$ drawn on it. Using the relationship between α and $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ from

$\frac{\dot{\theta}_{\text {out }}}{\hat{\theta}_{\text {in }}}$	α
. 00	∞
. 05	8.0
. 10	3.84
. 15	2.45
. 20	1.75
. 3	1.2
. 4	. 95
. 5	. 76
. 6	. 65
. 7	. 57
. 8	. 51
. 9	. 466
1.0	. 43
1.1	. 40
1.2	. 375
1.3	. 354
1.4	. 335
1.5	. 32

Table III.6 α as a Function of $\frac{\dot{\theta}_{\text {out }}}{\theta_{\text {in }}}$ for coulomb Friction Plus Stiction in Example \#6

table (III.6), the constant $\Theta_{\text {in }}$ curve is drawn on figure (3.23). The intersection of the constant $\Theta_{\text {in }}$ curve with the ω curves in figure (3.23) gives the relationship between α and ω for the coulomb friction plus stiction element.

The final step in the open loop frequency response analysis is making a plot of $\frac{\Theta_{a}}{\Theta_{a}}$ versus ω. Using equation (3.31) and the PARAM-7 subprogram, plots of $\frac{\theta_{\Theta}}{\Theta_{a}}$ magnitude versus ω (figure (3.24)) and $\frac{\Theta_{\text {out }}}{\Theta_{a}}$ - phase versus ω (figure (3.25)) are made. Both plots have constant α curves drawn on them. Using the coordinates of α and ω, the constant $\Theta_{i n}$ curve in figure (3.23) is replotted onto figures (3.24) and (3.25). The constant $\Theta_{\text {in }}$ curves on these two plots are the open loop magnitude and phase frequency response of this example. The linear response $(\alpha=0.0)$ is also shown.

For a better analysis, the closed loop response is shown in figure (3.26) for the magnitude and figure (3.27) for the phase. These plots were obtained in the same manner as previous examples. The linear response $(\alpha=0.0)$ is also shown.

Figure 3.24 Open loop magnitude frequency response of example \#6

Figure 3.25 Open loop phase frequency response of example \#6

Figure 3.26 Closed loop magnitude frequency response of example \#6

Figure 3.27 Closed loop phase frequency response of example \#6
A. INTRODUCTION

In the past examples, the frequency response was described as a constant $\Theta_{\text {in }}$ curve. The frequency response was obtained by letting $\Theta_{i n}$ be equal to some specified value. A change in $\Theta_{\text {in }}$ results in a change in the response. In this chapter, two examples are analyzed for different values of input. The first example has a saturation element in the forward path, and the second example has a dead zone element in the major feedback path.
B. THE EFFECT OF CHANGING THE INPUT OF A SYSTEM WITH

A SATURATION ELEMENT
The example of chapter 2 used an input of magnitude 10.0. $\Theta_{i n}=10.0$. To see what is the effect of various other amplitudes of signals, $\Theta_{i n}$ of $5.0,7.5,10.0,15.0$, 20.0 and 25.0 will be used. The steps in this analysis are the same as those taken in previous examples. In order to derive a relationship between gain of the saturation element and frequency, the transfer function of the signal going into the saturation element must be obtained. By simple manipulation $\frac{\Theta_{e}}{\Theta_{i n}}$ can be found, as shown in the following steps:

$$
\begin{equation*}
\theta_{e}=\theta_{i n}-\theta_{\text {out }} \tag{4.1}
\end{equation*}
$$

Figure 4.1 Block diagram of servomechanism in chapter 2

$$
\begin{align*}
& \text { Dividing by } \Theta_{i n} \\
& \begin{aligned}
& \Theta_{e} \\
& \Theta_{\text {in }}=1-\frac{\Theta_{\text {out }}}{\Theta_{i n}} \\
&=1-\frac{600 \alpha}{s^{4}+18 s^{3}+95 s^{2}+150 s+600 \alpha} \\
&=\frac{s^{4}+18 s^{3}+95 s^{2}+150 s}{s^{4}+18 s^{3}+95 s^{2}+150 s+600 \alpha}
\end{aligned}
\end{align*}
$$

where α is the variable gain of the saturation element.
By using the PARAM program mentioned previously, a plot of α, (variable gain of the saturation element), versus the magnitude of $\frac{\Theta_{e}}{\Theta_{i n}^{*}}$ is obtained. This is shown in figure (4.2). The saturation element may be represented by a variable gain which is a function of the input signal, $\Theta_{e}{ }_{e}$ However the plot in figure (4.2) is gain, α, versus $\frac{e}{\Theta_{i n}}$. $\stackrel{B y}{\Theta}$ the following equations, a relationship between α and $\frac{e}{\Theta_{i n}}$ is developed.

$$
\begin{equation*}
\alpha=\frac{\Theta_{\mathrm{b}}}{\Theta_{\mathrm{e}}} \tag{4.3}
\end{equation*}
$$

where Θ_{b} is the signal out of the saturation element as shown in figure (4.3).

Dividing both the numerator and the denominator of the right-hand side of equation (4.3) by $\Theta_{i n}$.

$$
\begin{equation*}
\alpha=\frac{\theta_{b /} / \Theta_{i n}}{\Theta_{e} / \theta_{i n}} \tag{4.4}
\end{equation*}
$$

Figure 4.2α versus $\frac{e}{i n}$ with constant ω curves and constant
$\Theta_{\text {in }}$ curves

Figure 4.3 Saturation element in servomechanism
α is constant in the region where $\Theta_{e} \leq 10.0$. In the region where $\Theta_{e} \geq 10.0, \Theta_{b}$, the output of the saturation element, is 10.0. Thus equation (4.4) becomes.

$$
\begin{equation*}
\alpha=\frac{10.0 / \theta_{i n}}{\theta_{e} / \theta_{i n}} \quad \theta_{e} \geq 10.0 \tag{4.5}
\end{equation*}
$$

For $\Theta_{i n}=5.0$, equation (4.4) becomes

$$
\alpha=1.0
$$

$$
\begin{equation*}
\frac{\Theta_{e}}{\theta_{i n}} \leq 2.0 \tag{4.62}
\end{equation*}
$$

$\alpha=\frac{2.0}{\theta_{e} / \theta_{i n}}$

$$
\begin{equation*}
\frac{\Theta_{e}}{\Theta_{i n}} \geq 2.0 \tag{4.6b}
\end{equation*}
$$

In like manner, for $\Theta_{i n}=7.5$

$$
\begin{equation*}
\alpha=1.0 \tag{4.7a}
\end{equation*}
$$

$$
\frac{\Theta_{e}}{\Theta_{i n}} \leq 1.333
$$

$\alpha=\frac{1.333}{\theta_{e} / \theta_{\text {in }}}$

$$
\begin{equation*}
\frac{\theta_{e}}{\theta_{i n}} \geq 1.333 \tag{4.7b}
\end{equation*}
$$

For $\Theta_{\text {in }}=10$
$\alpha=1.0$

$$
\begin{equation*}
\frac{\Theta_{e}}{\theta_{i n}} \leq 1.0 \tag{4.8a}
\end{equation*}
$$

$$
\begin{equation*}
\alpha=\frac{1.0}{\Theta_{\mathrm{e}} / \Theta_{i n}} \tag{4.8b}
\end{equation*}
$$

$$
\frac{\Theta_{e}}{\theta_{i n}} \geq 1.0
$$

For $\Theta_{\text {in }}=20.0$
$\alpha=1.0$
$\frac{\Theta_{e}}{\Theta_{i n}} \leq 0.50$
$\alpha=\frac{0.5}{\Theta_{e} / \Theta_{\text {in }}}$
$\frac{\Theta_{e}}{\theta_{i n}} \geq 0.50$
For $\Theta_{i n}=15.0$
$\alpha \quad 1.0$
$\frac{\Theta_{e}}{\Theta_{i n}} \leq 0.667$
$\alpha=\frac{0.667}{\Theta_{e} / \Theta_{i n}}$
$\frac{\Theta_{e}}{\Theta_{i n}} \geq 0.667$

For $\Theta_{\text {in }}=25.0$
$\alpha=1.0$
$\frac{\Theta_{e}}{\theta_{i n}} \leq 0.40$
$\alpha=\frac{0.40}{\Theta_{e} / \theta_{i n}}$
$\frac{\Theta_{e}}{\Theta_{i n}} \geq 0.40$

By using equations (4.6), (4.7), (4.8), (4.9), (4.10) and (4.11), a table may be made up of β as a function of $\frac{\Theta_{e}}{\Theta_{i n}}$ and $\Theta_{i n}$. This is shown in table (IV.1). Using the values of α in table (IV.1), the constant $\Theta_{i n}$ curves are drawn on figure (4.2), using α and $\frac{e}{\Theta_{i n}}$ as coordinates.

0.0	1.0	1.0	1.0	1.0	1.0	1.0
0.1	1.0	1.0	1.0	1.0	1.0	1.0
0.2	1.0	1.0	1.0	1.0	1.0	1.0
0.3	1.0	1.0	1.0	1.0	1.0	1.0
0.4	1.0	1.0	1.0	1.0	1.0	1.0
0.5	1.0	1.0	1.0	1.0	1.0	0.8
0.6	1.0	1.0	1.0	1.0	0.835	0.667
0.7	1.0	1.0	1.0	0.955	0.715	0.572
0.8	1.0	1.0	1.0	0.835	0.625	0.50
0.9	1.0	1.0	1.0	0.742	0.556	0.445
1.0	1.0	1.0	1.0	0.667	0.5	0.4
1.0	1.0	1.0	0.91	0.606	0.455	0.364
1.2	1.0	1.0	0.833	0.556	0.417	0.334
1.3	1.0	1.0	0.77	0.514	0.385	0.308
1.4	1.0	0.955	0.714	0.477	0.357	0.286
1.5	1.0	0.89	0.667	0.445	0.333	0.267
1.6	1.0	0.835	0.625	0.417	0.312	0.25
1.7	1.0	0.785	0.588	0.393	0.294	0.235
1.8	1.0	0.741	0.555	0.371	0.278	0.222
1.9	1.0	0.702	0.526	0.352	0.263	0.212
2.0	1.0	0.669	0.500	0.334	0.250	0.200
2.1	0.95	0.633	0.476			
2.2	0.91	0.606	0.455			
2.3	0.87	0.55	0.435			
2.4	0.83	0.536	0.433			
2.5	0.80	0.534	0.417			
2.6	0.77	0.514	0.400			
2.7	0.74	0.494				
2.8	0.715	0.476				

Table IV.l α as a Function of $\frac{\Theta_{e}}{\Theta_{i n}}$ and $\Theta_{i n}$ for the Saturation Element

The intersection of the constant $\Theta_{i n}$ curves and ω curves gives the relationship between α, the variable gain of the saturation element, and w^{\prime} frequency. It should be noted that each constant $\Theta_{i n}$ curve intersects a particular constant \notin curve two or three times, giving two or three values of α for the same frequency. This is the jump resonance effect which will be shown more clearly in the closed loop frequency response curves.

Using the PARAMS program again, a plot of $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ versus ω is obtained. This plot, figure (4.4), consists of constant α curves of various values between $\alpha=0.25$ and $\alpha=1.0$. The coordinates of the constant $\Theta_{\text {in }}$ curves in figure (4.2) are ω, frequency, and α, nonlinear gain. Using these coordinates, the constant $\Theta_{i n}$ curves are replotted in figure (4.4). As was noted previously in figure (4.2), each constant $\Theta_{\text {in }}$ curve intersects some ω curves more than once. When plotted on figure (4.4), this effect is clearly seen as being a jump resonance effect caused by the saturation element.

The effect of changing the input is seen in figure (4.4). Increasing $\Theta_{\text {in }}$ decreases the magnitude of the resonance peak and decreases the resonance frequency. The jump resonance remains about the same as $\Theta_{\text {in }}$ changes.

Figure 4.4 closed loop frequency response for various $\boldsymbol{\theta}_{\text {in }}$
C. THE EFFECT OF CHANGING THE INPUT OF A SYSTEM WITH

A DEAD ZONE ELEMENT
The effect of changing the input of the system with a dead zone element can be seen in the same manner as the previous example. The block diagram of the system with dead zone is figure (4.5), where β is the variable gain of the dead zone element. The dead zone element is different from the one used in chapter 2. Its input-output describing curve is shown in figure (4.6) where $\Theta_{\text {out }}$ is the signal out of the element. Note that the non-dead zone portion of the curve does not have unity gain. The gain is 2.0 when the signal is not in the dead zone portion.

The frequency of the system will be analyzed for four different inputs. These inputs are $\Theta_{i n}=10.0 . \quad \Theta_{i n}=20.0$,

$$
\Theta_{i n}=40.0 \text { and } \quad \Theta_{i n}=80.0 . \text { In order to ana- }
$$

lyze the problem, the same steps must be taken as in the preceding examples. The first step is to find a relationship between $\frac{\Theta_{\text {in }}}{\Theta_{\text {in }}}$ and β, the nonlinear variable gain of the saturation element.
Referring to figure (4.5), it is seen that,

$$
\beta=\frac{\Theta_{a}}{\Theta_{\text {out }}}
$$

However $\beta=0.0$ when $\Theta_{\text {out }} \leq 40.0$ from figure (4.6). Or,

$$
\begin{equation*}
\Theta_{a}=2\left(\Theta_{\text {out }}-40\right)=2 \Theta_{\text {out }}-80 . \quad \Theta_{\text {out }} \geq 40.0 \tag{4.13a}
\end{equation*}
$$

Figure 4.5 Block diagram of servomechanism with dead zone element in the feedback path

Figure 4.6 Dead zone element of second example

Substituting equation (4.14) into equation (4.12),

$$
\begin{equation*}
\beta=\frac{2 \Theta_{\text {out }}-80}{\Theta_{\text {out }}} \quad \Theta_{\text {out }} \geq 40 \tag{4.13b}
\end{equation*}
$$

Dividing both numerator and denominator of the righthand sides of equations (4.13a) and (4.13b) by $\Theta_{\text {in }}$.

$$
\begin{array}{ll}
\beta=0.0 & \frac{\Theta_{\text {out }}}{\Theta_{\text {in }}} \leq \frac{40}{\Theta_{\text {in }}} \\
\beta=\frac{\frac{2 \Theta_{\text {out }}}{\Theta_{\text {in }}}-\frac{80}{\Theta_{\text {in }}}}{\Theta_{\text {out }} / \Theta_{\text {in }}} & \Theta_{\text {out }} \\
\Theta_{\text {in }} & \frac{40.0}{\Theta_{\text {in }}} \tag{4.15b}
\end{array}
$$

Equations (4.15a) and (4.15b) can be solved for each $\Theta_{i n}$. For $\Theta_{i n}=10.0$,

$$
\beta=0.0
$$

For $\Theta_{\text {in }}=20.0$,
$\beta=0.0$

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}} \leq 4.0 \tag{4.16a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}} \geq 4.0 \tag{4.16b}
\end{equation*}
$$

$\beta=\frac{\frac{2 \Theta_{\text {out }}}{\Theta_{\text {in }}}-4.0}{\Theta_{\text {out }}} \Theta_{\text {in }}^{\Theta_{\text {in }}}$

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}} \geq 2.0 \tag{4.17b}
\end{equation*}
$$

$$
\text { For } \Theta_{\text {in }}=40.0
$$

$$
\beta=0.0
$$

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}} \leq 1.0 \tag{4.18a}
\end{equation*}
$$

$$
\frac{\theta_{\text {out }}}{\theta_{\text {in }}} \geq 1.0
$$

For $\Theta_{\text {in }}=80.0$,

$$
\begin{equation*}
\beta=0.0 \tag{4.19a}
\end{equation*}
$$

$$
\begin{equation*}
\beta=\frac{\frac{2 \Theta_{\text {out }}}{\Theta_{\text {in }}}-1.0}{\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}} \tag{4.19b}
\end{equation*}
$$

$$
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}} \geq 0.5
$$

Equations (4.16a), (4.16b), (4.17a), (4.17b), (4.18a), (4.18b), (4.19a) and (4.19b) give the relation between $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ and β for the various constant $\Theta_{\text {in }}$. This relation is made into table (IV.2) where $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ is the enterring value and β is read out for a constant $\Theta_{\text {in }}$.

$\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$	$\Theta_{\text {in }}=10$.	$\Theta_{\text {in }}=20$.	$\Theta_{\text {in }}=40$.	$\Theta_{\text {in }}=80$.
0.0	0.0	0.0	0.0	0.0
0.5	0.0	0.0	0.0	0.0
1.0	0.0	0.0	0.0	1.0
1.5	0.0	0.0	0.667	1.33
2.0	0.0	0.0	1.00	1.5
2.5	0.0	0.4	1.20	1.6
3.0	0.0	0.667	1.33	
3.5	0.0	0.855	1.43	
4.0	0.0	1.00	1.5	
4.5	0.22	1.12	1.6	
5.0	0.4	1.2		
5.5	0.546	1.27		
6.0	0.667	1.33		
6.5	0.77	1.38		
7.0	0.856	1.43		
7.5	0.93	1.47		
8.0	1.00	1.50		
8.5	1.06	1.53		
9.0	1.11	1.56		
9.5	1.16	1.58		
10.0	1.20	1.60		

Table IV. $2 \quad \beta$ as a Function of $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ and $\Theta_{\text {in }}$ for
the Dead Zone

Using the PARAMS-5 subprogram of the PARAMS program, a plot of β versus $\frac{\Theta_{\text {out }}}{\Theta_{i n}}$ with constant ω curves is obtained, as shown in figure (4.7). Using the relation between $\frac{\Theta_{i n}}{\text { out }_{\text {in }}}$ and β, tabulated in table (IV.2), constant $\Theta_{\text {in }}$ curves are drawn on figure (4.7). The intersection of the constant $\Theta_{i n}$ curves and the ω curves in figure (4.7) gives the relation between frequency and β.

The last step in the analysis, is the drawing of the closed loop frequency response for the various inputs. Using the PARAMS-7 subprogram of the PARAMS program, a plot Θ of $\frac{\text { out }}{\Theta_{i n}}(\mathrm{~dB})$ versus frequency with constant β curves is obtained. This is figure (4.8). Using the relation between β and ω just found, the constant $\Theta_{i n}$ curves are drawn on figure (4.8).

Figure (4.8) shows the effect of the various inputs. As $\Theta_{i n}$ is decreased, the magnitude of the flat part of the response is decreased. At the same time, a jump resonance effect takes place. This jump resonance is opposite to the one found for the saturation problem of this chapter.

Figure 4.8 closed loop frequency response for various $\boldsymbol{\theta}_{\text {in }}$ in a system with dead zone

V. DESIGN TECHNIQUES

A. FIRST DESIGN PROBLEM

The previous chapters explored the techniques of analysis and showed that they worked for every example attempted. The question is whether or not these techniques can be reversed. The problem is to start with a given linear system, and desigr an element, linear or nonlinear, so that the system meets a certain specified response. It must be kept in mind that if a nonlinear element is used, it must be a signle-valued nonlinearity. To see whether or not this design can be accomplished, an example will be worked.

The design problem is a simple third order type 1 feedback system, where the closed loop transfer function is,

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}=\frac{\mathrm{K}_{1} K_{2}}{\mathrm{~s}\left(\mathrm{~s}+\mathrm{p}_{1}\right)\left(\mathrm{s}+\mathrm{p}_{2}\right)+\mathrm{K}_{1} \mathrm{~K}_{2}} \tag{5.1}
\end{equation*}
$$

as shown in figure (5.1).
Let $\mathrm{p}_{1}=1, \mathrm{p}_{2}=2$ and $\mathrm{K}_{1}=1$.
The first part of the problem is to find a K_{2} so that the system is at the stability limit. This is easily done by conventional methods. and it is found that $K_{2}=6$. Equation (5.1) now becomes.

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}=\frac{6}{s^{3}+3 s^{2}+2 s+6} \tag{5.2}
\end{equation*}
$$

Figure 5.1 Type 1 third order feedback system

The second part of the design problem is also linear. The requiremert is to provide tachometer feedback in a minor loop so that $M_{p}(\omega)=2.0$. The block diagram of the system now is figure (5.2).

As has been previously shown, the PARAMS program can solve this aspect of the problem. ${ }^{4}$ The transfer function of the system is now.

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}=\frac{6}{s^{3}+3 s^{2}+2 s+6+6 K_{t} s} \tag{5.3}
\end{equation*}
$$

where K_{t} is the gain of the tachometer feedback element. The PARAM-5 subprogram of the PARAMS program provides an easy method for determining K_{t} when $M_{p}(\omega)=2.0$. Figure (5.3) gives a plot of $K_{t^{\prime}}$, tachometer feedback gain, versus the magnitude of $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$. Constant ω curves have been drawn on the plot for the region of frequency that is of interest. A vertical line is drawn at $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}=2.0$. This line represents the desired $M_{p}(\omega)$. The intersection of any horizontal line with the constant ω curves gives the frequency response of the system. The ordinate value of this line is K_{t}. Thus the horizontal line at $K_{t}=0.35$ gives the desired $M_{p}(\omega)=2.0$ 。

[^0]

Figure 5.2 Third order feedback system with tackometer feedback

Figure $5.3 \mathrm{~K}_{\mathrm{t}}$ versus $\frac{\mathrm{out}_{\text {in }}}{\hat{i n}}$ magnitude for design problem

The last step in the design is to change $M_{p}(\omega)$ so that $M_{p}(\omega)=1.2$. This is to be done by putting either a nonlinear or linear element in the minor feedback path. This additional requirement changes the block diagram so that it now looks like figure (5.4), where β represents the gain of the nonlinear or linear element. Many techniquess can be used for designing a compensator to accomplish this new requirement. However in this particular case, a restriction will be placed on the system. The requirement is that the compensator be either a constant gain device, i.e., an amplifier or attenuator, or a variable gain device, such as a single-valued nonlinearity.

The next step in this design is similar to the previous step. A plot of nonlinear or linear gain (or attenuation) versus $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ magnitude $\left(M_{p}(\omega)\right)$ is to be made. This is done by the PARAM-5 subprogram of the PARAMS program. The plot is shown as figure (5.5). The ordinate is β, the linear or nonlinear gain, which ranges from 0.0 to 2.1 . The abscissa is $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ magnitude. A vertical line is drawn at $\frac{\text { out }}{\Theta_{\text {in }}}=1.2$. Because the requirements of the problem state that $M_{p}(\omega)=1.2$, no design solution can extend to the right of the $\frac{\Theta_{\text {in }}}{\Theta_{\text {in }}}=1.2$ line in figure (5.5). This region is shaded, and is a 'restricted design zone' as far as the design is concerned.

The final result in this design is to develop the shape of an element which, when put in the system for β in figure

Figure 5.4 Third order system with linear/nonlinear compensator in tackometer feedback loop

Figure 5.5β versus $\frac{\theta_{\text {out }}}{\Theta_{\text {in }}}$ magnitude for design problem
(5.4). gives the desired response. Before this can be obtained, steps similar to those in chapters 2,3 and 4 must be followed. These steps. however, must be reversed. Having determined in figure (5.5) the region in which design cannot take place, a relationship between this region and the variable β is found. The relationship has the coordinates of β and frequency. The next step is to find a relationship between β and the signal going into the linear or nonlinear element, using the relationship between β and ω.

It is difficult to find a relationship between a variable gain, β, and Θ_{e} in terms of frequency. However, it is a relatively simple process to find a relationship between β and $\frac{e}{\Theta_{i n}}$ in terms of frequency. Looking at figure (5.4),
$\frac{\Theta_{e}}{\theta_{\text {out }}}=K_{t} s=0.35 \mathrm{~s}$
Multiplying both sides of equation (5.4) by $\Theta_{\text {out' }}$
$\Theta_{e}=.35 \mathrm{~s} \Theta_{\text {out }}$

And dividing both sides of equation (5.5) by $\Theta_{i n}$.
$\frac{\Theta_{e}}{\Theta_{i n}}=0.35 \mathrm{~s} \frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$

By substituting $K_{t}=0.35$ into equation (5.3) and letting the nonlinear or linear element be represented by $\boldsymbol{\beta}$, equation (5.3) becomes,

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}=\frac{6}{s^{3}+3 s^{2}+2 s+6+2.1 \beta_{s}} \tag{5.7}
\end{equation*}
$$

Substituting equation (5.7) into equation (5.6),

$$
\begin{equation*}
\frac{\Theta_{e}}{\theta_{i n}}=\frac{2.1 s}{s^{3}+3 s^{2}+2 s+6+2.1 \beta s} \tag{5.8}
\end{equation*}
$$

Equation (5.8) is used in the PARAM-5 subprogram to produce figure (5.6). Figure (5.6) has $\boldsymbol{\beta}$, the variable gain, as the ordinate and $\frac{e}{\Theta_{i n}}$ magnitude as the abscissa. The same constant \boldsymbol{w} curves that are on figure (5.5) are on figure (5.6). Using β and ω as the coordinates for the restricted design zone in figure (5.5), this zone can be transferred to figure (5.6). This restricted design zone represents the area in which design cannot take place. The line that is the left-hand boundary of the zone is the critical boundary which will be used to formulate a nonlinear element.

Referring to figure (5.4) again, it is seen that,

$$
\begin{equation*}
\beta=\frac{\Theta_{a}}{\Theta_{e}} \tag{5.9}
\end{equation*}
$$

And that.

$$
\begin{equation*}
\Theta_{a}=\beta \Theta_{e} \tag{5.10}
\end{equation*}
$$

Recalling that $\Theta_{i n}$ is assumed a constant, the abscissa of figure (5.6) is Θ_{e} when $\Theta_{i n}=1.0$. From equation (5.5) and figure (5.6), the restricted design zone with its lefthand boundary line can be reconstructed in a plot of Θ_{a} versus Θ_{e}. where Θ_{a} is the signal out of the design element. This is depicted in figure (5.7) and provides a ready means of design.

When looking at figure (5.7), a simple solution to the problem of making $M_{p}(\omega) \leq 1.2$ is seen immediately. The solution is to provide a constant gain of 2.0 or $\beta=2.0$. This constant gain is shown as a straight line in figure (5.7). This solution could have been seen in figure (5.6) by having a horizontal line at $\beta=2.0$. The $\beta=2.0$ line in figure (5.6) does not pass through the restricted zone. This solution is also seen in figure (5.5) as a $\beta=2.0$ line also. One could go back in the design process to where K_{t} was being determined, from figure (5.3), it is seen that by making $K_{t}=.7$, a $M_{p}(w)=1.0$ is obtained. By making $\beta=2.0$, one is making a new K_{t} i.e.. K_{t} new $=\beta K_{t}$ for a constant β.

However, looking at figure (5.7)again, it is seen that a nonlinear design is also possible. One such nonlinear design is to have a relay with dead zone。 This relay is drawn on figure (5.7). For signals less than 0.25, the output is 0.0 . For signals greater than 0.25 , the

Figure 5.7 plot of θ_{a}-signal out of the element, versus O-signal into the element, with restricted design zone and proposed designs
output is 1.5. The relay with dead zone describing curve (constant $\Theta_{i n}$ curve) can be redrawn in the following manner:

$$
\begin{equation*}
\beta=\frac{\Theta_{a}}{\Theta_{e}} \tag{5.11}
\end{equation*}
$$

which comes from figure (5.4). For this relay with dead zone,
$\Theta_{a}=0.0$
$\Theta_{\mathrm{e}} \leq 0.25$
$\theta_{a}=1.5$
$\theta_{e} \geq 0.25$
Substituting equation (5.12) into equation (5.11).

$$
\begin{array}{ll}
\beta=\frac{0.0}{\Theta_{e}} & \Theta_{e} \leq 0.25 \\
\beta=\frac{1.5}{\Theta_{e}} & \Theta_{e}=0.25
\end{array}
$$

And dividing both the numerator and denominator of the right-hand side of equation (5.13) by $\Theta_{i n}$ and letting $\Theta_{i n}=1.0$ for part of the numerator.

$$
\begin{array}{ll}
\beta=0.0 & \frac{\Theta_{e}}{\Theta_{i n}} \leq 0.25 \\
\beta=\frac{\Theta_{i n}}{\Theta_{e} / \Theta_{i n}} & \frac{\Theta_{e}}{\Theta_{i n}} \geq 0.25
\end{array}
$$

From equation (5.14), a table may be constructed similar to those in the previous chapters. The entering value is $\frac{e}{\Theta_{i n}}$, and the value read off is β, the nonlinear variable gain. $\frac{e}{\Theta_{i n}}$ is the abscissa of figure (5.6) and β is the ordinate of figure (5.6). The result is table (V.l). With table (V.l), the constant $\Theta_{i n}$ curve for the relay can be reconstructed on figure (5.6). However, since figure (5.6) does not cover the range of β and $\frac{e_{i n}}{\Theta_{i n}}$ needed, a new plot is obtained. This plot is figure (5.8) where β goes from 0.0 to 6.0 and $\frac{e_{i}}{\Theta_{i n}}$ goes from 0.0 to 2.4. It is the same plot as figure (5.6), except that the scales have been expanded. The restricted design zone is reconstructed on figure (5.8). Now the constant $\Theta_{i n}$ curve for the relay with dead zone is plotted on figure (5.8). The intersection of the constant $\Theta_{i n}$ curve and the ω curves gives the relationship between β and ω. Using this relationship in figure (5.8), the closed loop frequency response can be reconstructed to show that the relay does meet the specifications.

The PARAM-7 subprogram of the PARAMS program is used to reconstruct the closed loop frequency response. This plot is figure (5.9) and has $\frac{\text { out }}{\boldsymbol{O}_{\text {in }}}$ magnitude ($d B$) versus ω, with constant β curves of $\beta=0.0,0.5,0.75,1.0$, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.5, 4.0. 5.0 and 6.0 drawn on it. The frequency response for the relay is drawn on figure (5.9) , using the coordinates of β and ω

$\frac{\Theta_{e}}{\Theta_{i n}}$	β
0.0	0.0
0.1	0.0
0.2	0.0
0.25	0.0
0.25	6.0
0.3	5.0
0.35	4.28
0.4	3.75
0.45	3.33
0.5	3.00
0.55	2.73
0.6	2.5
0.65	2.31
0.7	2.14
0.75	2.00
0.8	1.87
0.85	1.77
0.9	1.69
0.95	1.58
1.0	1.50
1.1	1.36
1.2	1.25
1.3	1.15
1.4	1.07
1.5	1.00
1.6	0.93
1.7	0.88
1.8	0.83
1.9	0.79
2.0	0.75

Table V.l $\quad \beta$ as a Function of $\frac{\Theta_{e}}{\Theta_{i n}}$ for the Relay with Dead Zone.

Figure 5.8β versus $\frac{\theta_{e}}{\Theta_{i n}}$ magnitude with proposed relay with dead zone constant $\Theta_{\text {in }}^{\text {in }}$ curve

Figure 5.9 Closed loop frequency response of design problem with proposed design solutions
from figure (5.8). It is seen in figure (5.9) that the system with the relay does satisfy the conditions that $M_{p}(\omega) \leq 1.2(1.58 \mathrm{~dB})$. Also drawn on figure (5.9) is the linear design solution, $\beta=2.0$, which also satisfies the design conditions. A $\beta=1$ curve is drawn on figure (5.8) to show the response of the system after determining K_{t} but before the design of the linear/nonlinear element. The solution has been checked by analog simulation and the results are plotted on figure (5.9) by "x's". The analog solution checks closely with the graphical design.

The steps in the design are summarized below. According to the problem, some steps may be eliminated while other steps may have to be added to solve the particular problem.

1. After all linear design and compensation have been completed, with only the nonlinear design left, obtain a plot of β, the variable gain of the nonlinear element, versus $\frac{\Theta_{\text {out }}}{\Theta_{i n}}$ the magnitude, with constant ω curves drawn on the plot. This can be accomplished by using the PARAM-5 subprogram of the PARAMS program or some other similar computer program. The plot corresponding to the example in this chapter is figure (5.5).
2. Having obtained the plot in step 1 , draw on it the area in which design cannot take place (a restricted design zone). This zone is determined by the specifications of the problem and must be in terms of $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ magnitude and frequency.
3. Obtain the transfer function of the signal going into the nonlinear/linear element with respect to the input signal into the system. In the problem of this chapter, this transfer function is $\frac{e}{\Theta_{i n}}$. Using the transfer function with β representing the variable gain, obtain a second plot of β versus this transfer function with the same ω curve as were drawn in the plot in step 1 . This corresponds to figure (5.6) in this chapter.
4. Using the coordinates of β and ω from the plot in step l. transfer the restricted design zone to the plot obtained in step 3. One now has a relationship for the restricted design zone in terms of β and $\frac{e}{\Theta_{i n}}$.
5. Because $\Theta_{i n}$ must be specified as a constant to obtain the response of a system with a nonlinear element, the plot of step 3 is a relationship between β and Θ_{e} for the restricted design zone. From this relationship, a plot of Θ_{a} (the signal out of the linear/nonlinear element) versus Θ_{e} (the signal into the element) can be drawn. The restricted design zone is then drawn on this plot. This new plot corresponds to figure (5.7) in this chapter.
6. From this plot in step 5, any linear nonlinear element can be designed that does not fall into the restricted design zone. The nonlinear element must be a single-valued nonlinearity, however.
7. Make a table of β as a function of $\frac{\Theta_{e}}{\Theta_{i n}}$ for the element that was designed. This is done by using the plot
in step 6 , realizing that $\beta=\frac{\Theta_{a}}{\Theta_{e}}$ and that $\Theta_{i n}$ is a constant. This corresponds to table (V.l) in this chapter.
8. Having obtained this table in step 7。 plot the designed element constant $\Theta_{i n}$ curve on the plot of step 5. The coordinates of the constant $\Theta_{i n}$ curve are β and $\frac{e}{\Theta_{i n}}$ and come from the table in step 7. Having plotted the constant $\Theta_{\text {in }}$ curve on this plot, one now has the relationship between β and ω for the constant $\Theta_{i n}$ curve. This relationship comes from the intersection of the designed element's constant $\Theta_{i n}$ curve and the constant ω curves.
9. The final step is the reconstruction of the closed loop frequency response. The open loop frequency response can be obtained in the same manner, except by using the open loop transfer function rather than the closed loop transfer function. Obtain a plot of $\frac{\theta_{\text {out }}}{\Theta_{\text {in }}}$ versus the frequency, with constant β curves. The values of β of the design element should determine what β curves are needed in this plot. Replot the constant $\Theta_{\text {in }}$ curve onto this plot using the coordinates of β and ω found in step 8 . The constant $\Theta_{i n}$ curve on this plot should satisfy the design specifications.
B. SECOND DESIGN PROBLEM

In the previous analysis and design examples, the nonlinearities were functions of the signal into the element. A second type of nonlinearity is one that is a direct
function of frequency. The analysis techniques of this thesis can be used for this second type of nonlinear element. To illustrate how these techniques are used, a design problem is worked.

The block diagram of the second design problem is figure (5.10). This system is the same example as was used nchapter II. α represents the nonlinear element which will be used to change the frequency response. From figure (5.10), the closed loop transfer function is,

$$
\begin{equation*}
\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}=\frac{600 \alpha}{s^{4}+18 s^{3}+95 s^{2}+150 s+600 \alpha} \tag{5.15}
\end{equation*}
$$

Using the equation (5.15) and the PARAM-7 subprogram, a plot of $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}(d B)$ versus ω is obtained. This plot is figure (5.11) and has constant α curves plotted on it. Also on figure (5.11) is the desired frequency response of the system. The desired frequency response can be described in terms of α and ω from figure (5.11).

From figure (5.10) $\frac{\Theta_{e}}{\Theta_{i n}}$ is written,

$$
\begin{equation*}
\frac{\Theta_{e}}{\Theta_{i n}}=\frac{s^{4}+18 s^{3}+95 s^{2}+150 s}{s^{4}+18 s^{3}+95 s^{2}+150 s+600 \alpha} \tag{5.16}
\end{equation*}
$$

With equation (5.16) and the PARAM-5 subprogram, a plot of α versus $\frac{\Theta_{e}}{\Theta_{i n}}$ is made. This plot is figure (5.12) and has constant ω curves drawn on it. Using the coordinates of α and ω, the desired frequency response can be

Figure 5.10 Block diagram of second design problem

Figure 5.11 Desired closed loop frequency response of second design problem

replotted from figure (5.11) onto figure (5.12). As can be seen in figure (5.11), the desired solution is a function of frequency, not a function of $\frac{\Theta^{e}}{\Theta_{i n}}$ as was the case in previous examples. If the solution were a function of θ $\frac{e}{\Theta_{i n}}$, then for a given frequency, there would be two values of gain in figure (5.12). This would not give the proper frequency response. Figure (5.12) gives the desired solution in terms of α and ω with $\frac{e}{\Theta_{i n}}$ as a third parameter. $\frac{e}{\Theta_{i n}}$ can only be used as a parameter when $\frac{e}{\Theta_{i n}}$ is given with an associated value of frequency.

It can be clearly seen from figure (5.12), that for $\boldsymbol{\omega} \leq 1.5$, the gain, $\boldsymbol{\alpha}$, is 0.4. Between $\boldsymbol{\omega}=1.5$ and $\boldsymbol{\omega}=3.2$, the nonlinear device would have a gain varying bewteen 0.4 and 0.7. For $\omega \geq 3.2$, the gain of the element would be 0.7. This description of the nonlinear device can also be seen on an input-output plot of the nonlinear element. This diagram is figure (5.13) where a straight line segment represents the constant gain of the element.

The response of the system is not dependent on $\Theta_{i n} \cdot$ Thus, for this design solution, the frequency response is the same for all values of $\Theta_{i n}$. The realization of the desired nonlinear element could possibly consist of a variable amplifier with a frequency discriminator to determine what the gain of the element should be at a certain frequency.

Figure 5.13 Characteristics of the nonlinear element of the second design problem

VI. DISCUSSION, CONCLUSIONS

AND AREAS OF FUTURE STUDY

A. DISCUSSION

The accuracy of the solution of both the analysis and design depends on graphical accuracy. The plots made by the digital computer were accurate enough for the study. Any errors in the solutions came from plotting of the curves by hand and reading the data from the plots. In some cases where the scale of the plots was small and accuracy was critical, some small errors appeared in the solution.

All the examples, except for the open loop analysis, were checked by analog simulation. Appendix A explains the simulation. The nonlinear elements were simulated by using electronic switching and digital logic circuits. As a result, the nonlinear elements are ideal elements. In a real example, these elements may not be ideal, but instead show different characteristics. This presents no problem when using these analysis and design techniques as long as the nonlinear element remains single-valued. Any single-valued nonlinearity can be used in the analysis and design.

B. CONCLUSIONS

The main conclusion to be drawn from this study is that a workable, practical and reliable method has been developed to obtain the open and closed loop frequency response of
systems with a single-valued nonlinearity. This includes both magnitude and phase response. The method is fast. accurate, gives a graphical solution and involves no laborious calculations.

The method of analysis can be reversed and be used for synthesis without complicating the problem. The design techniques show clearly what are the possible design solutions, linear and nonlinear, including their exact parameters. As in the analysis, the nonlinear elements are restricted to single-valued elements. As shown in the second design problem, the analysis techniques can also be reversed to handle design solutions that are a function of only the frequency of the system. The desired frequency response remains independent of the magnitude of the signal going into the system.

The primary problem was finding the relationship between the nonlinearity and the frequency of the system. This method provides a very simple technique which permits the nonlinearity to be expressed as a variable gain and relates this gain to the frequency of the system simply and accurately.

The analysis techniques can be used for predicting jump resonance. The prediction includes not only the fact that jump resonance will occur but also the frequency of the jump resonance. This prediction can be made in the
first few steps of the analysis. The final frequency response shows the jump resonance in both magnitude and phase.
C. AREAS OF FUTURE STUDY

One of the basic areas that needs investigation is in the phase domain. With slight modification to the PARAMS program, phase can be added as one of the variables in plots other than just the PARAM-7 frequency response plot.

With the addition of phase, an extension of this
method may be possible so that two-valued nonlinearities could be analyzed. These nonlinearities could include backlash, negative deficiency, two-position relay, etc. These types of nonlinearities could also possibly be studied by breaking them down into real and imaginary parts and using the two parameter capability of the PAIAMS program to handle these two parts.

Another area left unexplored is analyzing the system with two single-valued nonlinearities. This could be developed as follows. The last step in the analysis technique was replotting the constant $\Theta_{i n}$ curve to a plot of Θ $\frac{\text { out }}{\Theta_{\text {in }}}$ versus ω to obtain the frequency response. Instead of doing this replotting, transfer the constant Θ_{i} in curve to a plot of the nonlinear gain versus $\frac{\Theta_{\text {out }}}{\text { in }^{o u}}$. In the PARAMS program, some element had to be designated as another parameter value and held constant for the analysis. By making a series of plots of nonlinear gain versus $\frac{\Theta_{\text {out }}}{\Theta_{i n}}$
with the constant $\Theta_{\text {in }}$ curve, each plot having the second parameter set to a different value, a three dimensional surface of the constant $\Theta_{\text {in }}$ curve is developed. The coordinates would be α, the nonlinear gain, β, the second parameter, $\frac{\Theta_{\text {out }}}{\Theta_{\text {in }}}$ and ω. By repeating this with a second nonlinear element, a second constant $\Theta_{i n}$ surface is obtained. The intersection of these two surfaces at a certain ω and Θ out gives the closed loop frequency response of the sysin tem with two nonlinear elements.

This technique just described would be of course very laborious. It could be greatly simplified by developing a digital computer program which would find the surfaces and their intersections. This could then be extended into a four dimensional space program to handle three nonlinearities, five dimensional space to handle four nonlinearities, etc.

APPENDIX A. ANALOG SIMULATION

The analog simulation was performed on the Donner $10 / 20$ analog computer and two EAI TR-20 analog computers. The Donner $10 / 20$ was used to simulate the linear portion of the system and the two EAI TR-20s were used to simulate the nonlinear element.

The simulation of the linear portion of a system was done by conventional analog simulation techniques. The main consideration was to preserve the position of the nonlinear element in the circuit so that no accidental manipulation occurred. This manipulation would correspond to incorrectly manipulating a block diagram with a nonlinear element. The reason for this care is the fact that the response of a system is a function of where the nonlinearity is placed in the system.

Scaling had to be used throughout the simulation and particularly in using the Donner with the two EAI computers. The Donner is a 100 v . machine and the EAIs are a 10 v . machines.

The success of the total simulation rested with the nonlinear element simulation. For this two EAI TR-20 electronic comparators were used, one electronic comparator in each machine. Each electronic comparator consists of a comparator unit which produces binary outputs and two electronic switching units. The comparator and switches
have a switching time of $1.0 \mu \mathrm{sec}$. and the comparator has a switching sensitivity of $\pm 1.0 \mu \mathrm{v}$. The block diagram of one electronic comparator is shown in figure (A.l). 5

The electronic comparator can be patched so that it compares two inputs, X and Y, so that,

$$
\begin{array}{ll}
X+Y \geq 0.0 & E_{O}=E_{1} \\
X+Y<0.0 & E_{O}=E_{2} \tag{A.1b}
\end{array}
$$

Where E_{1} and E_{2} are two arbitrary inputs and E_{o} is the output of the electronic comparator.

One electronic comparator was used for positive signals and the other electronic comparator was used for negative signals. Two examples are worked to show how the units were used.

The first example is an ideal relay (such a figure (3.18)) where it is desired that for all positive signals into the relay, the output is 4.0 volts. For all negative signals into the relay, the output is -4.0 volts. For the first electronic comparator, X is the input signal, Y is zero, E_{1} is 4.0 volts and E_{2} is the input signal. Thus, when $X+Y \geq 0.0$, which is when the input signal is greater than zero, the output from the first electronic comparator is E_{1} or 4.0 volts. When $X+Y<0.0$. which is

5
Electronic Associates. Inc. TR-20 Computer Operator's Reference Handbook. 1964.

Figure A. 1 EAI TR-20 edectronic comparator
when the input signal is negative, the output of the comparator is E_{2} or the negative portion of the input signal. The output, E_{o}, of the first electronic comparator is made the X and the E_{1} of the second electronic comparator. The Y is zero and E_{2} is -4.0 volts. Thus when the output of the first electronic comparator is negative, the output of the second electronic comparator is -4.0 volts. When the output of the first electronic comparator is positive, the output of the second electronic comparator is +4.0 volts which is the only positive output of the first electronic comparator.

The second example is a dead zone element whose dead space extends $\pm 4.0 \mathrm{v}$. Let the input into the dead zone element be represented by the symbol IN. For the first electronic comparator $X=I N, Y=4.0 \mathrm{~V} ., \mathrm{E}_{1}=\mathrm{IN}-4$. and $E_{2}=0.0$. Thus for positive signals greater than +4.0 v., the output, E_{Ol}, of the first electronic comparator is IN-4. For signals less than $+4 ., \mathrm{E}_{01}=0.0$. For the second electronic comparator let $X=I N, Y=+4 \ldots E_{1}=E_{01}$ and $E_{2}=I N+4$. Thus for signals less than 4.4 the output, $\mathrm{E}_{\mathrm{O} 2}$. is $\mathrm{IN}+4$. For signals greater than $-4 .$. $\mathrm{E}_{02}=\mathrm{E}_{\mathrm{Ol}}$ which is zero for $-4.0 \leq I N \leq 4.0$ and IN - 4 . for $I N>4$.

With the switching time of $1.0 \mu \mathrm{sec}$. and sensitivity of $l \mu \mathrm{v} .$, the response is very good. The output of the second electronic comparator is fed back into the linear system with appropriate scaling.

 00000000000000 00000000000000
 -HanNNNNNNNNNMmmmmmmmmmyt 0000000000000000000000000 0000000000000000000000000

 00 $0000000000000000000000000000 v 0000000000000000000$

UNかOUMNM mmmmytyt 00000000

 WRITE $(6,7)$ IRUN, NDRN, NORD, KPARAM, (JOKER (2), JPARAM(I), I=I,KPARAM) \&IOX, THE FQLLCWING: I2; GRAPHICAL CCNFIGURATIONS WILL RE COMPUTED E: $1 / 20 X, 8(A 8, I 1,3 X), 1)$ \& FORMAT (IOX,I2, GAMMA, OR THIRD VAR PARAMETER COEFFICIENTS WILL B EE USED, , /IOX, THE GAMMA VALUES ARE: I, IP8E12. 3, /, 10X, 1P8E12.3, /1 WRITE $(6,10)$ 10 FORMAT $(10 X$ "THE COEFFICIENTS FER THE NUMERATOR ARE: 10,1$)$ $0011 \quad I=1, L \hat{C} E$ $J=I-1$ IF(NGAMMA, LE,O) WRITE(6,12) HA(I), HAT(I), HBT(I),HCT(I), J IF (NGAMMA GGT:O) WRITE(6, 9) HA(I):GAMHA(I), HATII), GAMHAT(I), HBTII \&), GAMHBT(I), HCT(I),GAMHCT(I), J 11 CONTINUE WRITE 6,13$)$ 13 FORMATY:1OX, THE COEFFICIENTS FCR THE DENOMINATCR ARE: , / DO $14 \quad I=1, M O E$ IF(NGAMMA GT, OI WRITE(6, 9) HD(I), GAMHD(I), HDTII),GAMHDT(I), HET(I \&), GAMHET(I), HFT(I),GAMHFT(I),J 14 CÓNTINUE $\text { WRITE }(6 ; 15)$ WRITE $(6,16)$ 16 FORMAT (/17X:IMAG WRITE 16,17$)$ 17 FQRMAT1/,12X: CCNALPHA WRITE $(6,18)$ 18 FORMAT(\%12X: ALPHMIN CGNBETA IGRAPH WRITE $(6,6)$ CONALP, CONBET, CONMAG, CONOME EMIN XMAGMAX ALPHMAX BETAMIN WRITE $(6,19)$ JOKER(4), (ZALPHA(I), I=1, NALPHA) WRITE $(6,19)$ JCKER (5): (ZBETA (I), I=1, NBETA) WRITE 6,19$)$ JOKER(7): (ZMAGSQ(I), I=I,NMAG) IPHASE IQUAD WRITE 6,21 LYAXIS IMAG IWRITE,IGRAPH, IPHASE, IQUAD, IPOLAR,LX,LY IPO CONOMEGA $\quad, 11$ WRITE $(6,6) A L P H M N, A L P H M X, ~ E E T A M N, ~ B E T A M X, X M A G M N, X M A G M X, O M E G M N, O M E G M X$

nmytivencio mмmmmmmmy NNNNNNNNN 000000000

 NNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNN 0000000000000000000000000000000000
nion
rn NNN 000

WOOHNMGINOR-CNOHNMNLIUNWUOHN
 NNTNNNNNNNNNNNNNNNNINNMMM 0000000000000000000000000

+ oncononnm
00000 - 0 Hनm mмммммmм - 00000000

แn NooOnNmy
\rightarrow-manNNNN
m 0 mmmmmmm
0

\cdots	N	M	∞	σ	O-1	N		In	0	$\cdots \infty$	0	0	,	
n	\cdots	mmmmm	m	m	\checkmark *	+	+	\downarrow	\checkmark	$ナ$ ナ	ง*	in	\cdots	L

INOMSOL NNNNN mmmmm 00000

 00000000000000000000000000
 ininulub0 400000 mmmmmmmmmmmm 000000000000

	-10
¢－－0， 00°	
－	
arn－ioll 11110000	

以OUOU」－ココOUOO

\qquad

$$
\frac{1}{a} \pm \frac{\square}{2}
$$

$$
\begin{aligned}
& \text { EC } \\
& 1 I * I \\
& \text { INA } \\
& \text { IY } \\
& \text { CG } \\
& \text { Y M } \\
& \text { IYI }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{IH}_{5} \\
& \mathrm{O}
\end{aligned}
$$

- -

$$
\begin{aligned}
& 1110 \\
& \infty \propto 0
\end{aligned}
$$

* Mosesocosocose II 11

$$
\begin{aligned}
& Y 4=\text { NUNDEC } \\
& Y 5=L Y \\
& U M M Y 4 / D U M M Y 5 \\
& A L=L X+1 \\
& A L=L Y+1 \\
& 1 \text { I }=1, I F I N A L \\
& O J A=1, J F I N A L \\
& =X S *(I A-I-I Y) \\
& =Y S *(J A-I) \\
& D R A W(J A, X, Y, M O D, O, L A(50), I T I T L E, X S, Y S, O, I Y, 2,2, L X, L Y, O, L A S T)
\end{aligned}
$$

$$
\text { N0000 } 110-\text { ー }
$$

シóno
*
$\begin{array}{ll}0 & n \\ n\end{array}$

$\infty \infty$	心＊
Un！	6）＊
\bigcirc	＊
\sim	＊

0	-	N
0	0	0

GOANMJUNONOOO ONNTNNTNNNG MMMmmmmmmmmm 000000000000

 Mmmmmmmmmmmmmmm
 vaOOOOOOOOOUHHAHAHAH
 0000000000000000000

0

- \quad mari

 00

 000

$=(C * A(N P+M P) * B(N P-M P)+C * A(N P-M P) * B(N P+M P)) * O M E G A * *(2 * N O) *(-$
$=(M Q+1)+C S N B 1$
373
$=(C * A(N P+M P) * A(N P-M P)) * C N E G A * *(2 * N O) *(-1.0) * *(M O+1)$
$=S N B C+C S N B O$
 $B E T A+C * B(N P+M P) * E(N P-M P) * B E T A * B E T A) * O M E G A * *(2 * N Q) *(-1.0) * *$

 ここエミ・ト トト NNト

－NM	∞		－		m	＊	いいUN	－
0000	000	0	N	N	\cdots	＊	Mrror	＋
mmmm	mmm	m	m	m	m	＊	mmmm	mmm

 NNNNNNNNNNMMMMmmmmmmytyt 000000000000000000000000

 00000000000000000010000 00000000000000000000000
$5(C * D(N P+M P) * E(N P-M P)+C * C(N P-M P) * E(N P+M P)) * O M E G A * *(2 * N Q) *(-$
$Q+1)+C S D B 1$
$D B 1+C(N P+M P) * D(N P-M P)) * O M E G A * *(2 * N Q) *(-1.0) * *(M Q+1)$
$(C * D(N P)$
$D B D+C S D B D$
$(C \neq C(N P+M P) * D(N P-M P)+C * D(N P+M P) * E(N P-M P) * B E T A+C * D(N P-M P) * E$
$* B E T A+C * E(N P+M P) * E(N P-M P) * B E T A * B E T A) * O M E G A * *(2 * N Q) *(-1.0) * *$

$1400,396,396$

 ○○の
 ー- - N

-			
\sim	m	\checkmark	in
∞	∞	∞	∞
m	m	m	m

m
m
∞
m
m $m 0$
anom
mmm
$\begin{array}{ll}+ & m \\ m & m\end{array}$

- ∞ onumnmyinntr
 0000000000000 0000000000000

 000000000000000000000000NANHNTNTNAN 000000000000000000000000000000000

 00

NUMBER', I2, 11
EQ.21, GO TO 431,
$435,436,437,439,441,443,10001$, NPARAM
$434,445,438,440,442,444,10001$, NPARAM

 ய0 - - - - -

 ω

4m< -
-m<

m $<\infty$
4∞

 o 00000001 r－000000000000000000000000000000000 ON

n		＊									
\cdots	rr	Nrot	0	0	O0	00	－	\cdots	Nm	\checkmark	∞
\checkmark	＋ナ	けけんい	！	n	Ln⿺𠃊⿻丷木斤丶	ints	in	Lr，	trin	U	∞
\checkmark		ナ＊									0
		u									

以inunulininuntiop $\infty \infty 00 \infty 00 \infty \infty \infty$毋○○○○○○○○○

 ○○○○○○○○○○○○○○○○○0000

トMouNun
 $\infty \infty \infty 0 \infty \infty \infty$ 0000000

z＊

N	$m \times$	\cdots	\＃
m	mm	m	－
10	unt	0	H

a	N
m	t
in	

ri
in
in

LIST OF REFERENCES

1. Del Toro, V. and Parker, S.R., Principles of Control Engineering, McGraw-Hill Book Company, 1960.
2. Electronic Associates. Inc.. TR-20 Computer Operator's Reference Handbook, 1964.
3. Glavis, G.O. Frequency Response in the Parameter Plane, M.S. Thesis, Naval Postgraduate School, Monterey, California, 1968.
4. Ruivo, F.M.P.. Frequency Response Study of Nonlinear Networks by Parameter Plane Techniques, M.S. Thesis, Naval Postgraduate School, Monterey, California, 1968.
5. Staples, D.S., Frequency Response Analysis of Nonlinear Dynamic Systems, M.S. Thesis, Naval Postgraduate School, Monterey, California, 1968.
6. Thaler, G.J. and Pastel, M.P.. Analysis and Design of Nonlinear Feedback Control Systems, McGraw-Hill Book Company. 1962.

No. Copies

1. Defense Documentation Center	20
Cameron Station	
Alexandria. Virginia 22314	

2. Library, Code 0212

Naval Postgraduate School
Monterey, California 93940

3. Commander

1

Naval Ordnance Systems Command

Hqs. Department of the Navy

Washington,

D.C. 20360
$\begin{array}{ll}\text { 4. Professor G. J. Thaler } & 10 \\ \text { Department of Electrical Engineering } \\ \text { Naval Postgraduate School } \\ \text { Monterey. California } 93940\end{array}$
5. Dr. D. D. Siljak

1
Department of Electrical Engineering
University of Santa Clara
Santa Clara, California 93153
6. Mr. J. Karmarkar
1
Department of Electrical Engineering
University of Santa Clara
Santa Clara, California 93153

7. Dr. A. G. Thompson

1

Department of Mechanical Engineering

University of Adelaide

Adelaide, SOUTH AUSTRALIA
8. Dr. J. Peracaula
1
Division of Automatic Control
Technical University
J. Gutierrez Abascal 2
Madrid, 6, SPAIN

9. Dr. M. Rakic

Marsala Tita 6

Belgrade, YUGOSLAVIA

```10. Capt. R. D. Staples. USMC11816 Ridge RoadEl Dorado, Kansas 67042
```

11. Lt. F. M. P. Ruivo 1
Ministerio da Marina Portuguese Navy Lisbon, PORTUGAL
12. Dr. Lawrence Eisenberg 1
Department of Electrical Engineering Moore School of Engineering University of Pennsylvania Philadelphia, Pennsylvania 19104
13. Lt.JG John P. Davis, USN 1
173 Little Neck Road Centerport, New York 11721

DOCUMENT CONTROL DATA - R \& D

(Security classiflcation of tlite, body of abstract and indexing annotallon musf be entored when the overall report is claselled)
ORIGINATING ACTIVITY (Corporate euthor)
Naval Postgraduate School
Monterey, California 93940

2b. GROUP

REPORT TITLE
Frequency Response Analysis and Design of Single-Valued Nonlinear Systems Using the Parameter Plane

Master's Thesis; June 1969
5. AUTHOR(S) (Firat name, middle initial, last namo)

John P. DAVIS

10. DISTRIBUTION STATEMENT

Distribution of this document is unlimited.
11. SUPPLEMENTARY NOTES
12. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School Monterey, California 93940

Frequency response techniques are a valuable tool in the analysis and synthesis of linear systems. Extension of these techniques is made to analyze and design systems with a single-valued nonlinear element. The relationship between the characteristics of a nonlinear element and the frequency of the system is developed by simple calculations and a digital computer program.

SHELF BINDER

[^0]: ${ }^{4}$ Glavis, G.O. Frequency Response in the Parameter Plane. Master's Thesis, Naval Postgraduate School, 1967.

